A287616 Number of ways to write n as x(x+1)/2 + y(3y+1)/2 + z(5z+1)/2 with x,y,z nonnegative integers.
1, 1, 1, 3, 1, 2, 3, 1, 3, 1, 3, 3, 2, 4, 2, 3, 3, 3, 4, 3, 2, 5, 1, 2, 4, 3, 5, 4, 5, 4, 4, 3, 6, 3, 3, 2, 5, 2, 3, 7, 3, 7, 2, 6, 3, 5, 6, 7, 2, 4, 6, 3, 7, 2, 8, 4, 2, 6, 6, 3, 8, 3, 4, 6, 3, 7, 5, 6, 7, 4, 6, 9, 5, 6, 4, 4, 3, 4, 9, 5, 6
Offset: 0
Keywords
Examples
a(4) = 1 since 4 = 1*(1+1)/2 + 0*(3*0+1)/2 + 1*(5*1+1)/2. a(7) = 1 since 7 = 0*(0+1)/2 + 2*(3*2+1)/2 + 0*(5*0+1)/2. a(9) = 1 since 9 = 3*(3+1)/2 + 0*(3*0+1)/2 + 1*(5*1+1)/2. a(22) = 1 since 22 = 5*(5+1)/2 + 2*(3*2+1)/2 + 0*(5*0+1)/2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- Zhi-Wei Sun, List of conjectural tuples (a,b,c,d,e,f) with {x*(ax+b)/2 + y*(cy+d)/2 + z*(ez+f)/2: x,y,z = 0,1,2,...} = {0,1,2,...}
- Zhi-Wei Sun, Mixed sums of squares and triangular numbers, Acta Arith. 127 (2007), 103-113.
- Zhi-Wei Sun, On universal sums of polygonal numbers, Sci. China Math. 58 (2015), No. 7, 1367-1396.
- Zhi-Wei Sun, On universal sums x(ax+b)/2+y(cy+d)/2+z(ez+f)/2, arXiv:1502.03056 [math.NT], 2015-2017.
Programs
-
Mathematica
TQ[n_]:=TQ[n]=IntegerQ[Sqrt[8n+1]]; Do[r=0;Do[If[TQ[n-x(3x+1)/2-y(5y+1)/2],r=r+1],{x,0,(Sqrt[24n+1]-1)/6},{y,0,(Sqrt[40(n-x(3x+1)/2)+1]-1)/10}];Print[n," ",r],{n,0,80}]
Comments