A286944 Number of ways to write n as x^2 + 15*y^2 + z*(3z+1)/2, where x and y are nonnegative integers and z is an integer.
1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 6, 3, 2, 2, 2, 4, 2, 3, 3, 2, 5, 3, 2, 1, 3, 6, 2, 1, 1, 2, 4, 3, 4, 2, 3, 5, 3, 2, 2, 2, 2, 2, 1, 2, 3, 7, 3, 2, 2, 3, 4, 2, 3, 2, 3, 4, 4, 2, 5, 5, 9, 3, 1, 4, 3, 8, 2, 4, 2, 4, 9, 3, 2, 5, 2
Offset: 0
Keywords
Examples
a(33) = 1 since 33 = 4^2 + 15*1^2 + 1*(3*1+1)/2. a(34) = 1 since 34 = 2^2 + 15*1^2 + 3*(3*3+1)/2. a(48) = 1 since 48 = 6^2 + 15*0^2 + (-3)*(3*(-3)+1)/2. a(68) = 1 since 68 = 1^2 + 15*2^2 + 2*(2*3+1)/2. a(113) = 1 since 113 = 6^2 + 15*0^2 + 7*(3*7+1)/2. a(129) = 1 since 129 = 8^2 + 15*2^2 + (-2)*(3*(-2)+1)/2. a(220) = 1 since 220 = 13^2 + 15*0^2 + 6*(3*6+1)/2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- Zhi-Wei Sun, List of those tuples (a,b,c,d,e,f) for which each nonnegative integer should be represented by x(ax+b)/2 + y(cy+d)/2 + z(ez+f)/2 with x,y,z integers
- Zhi-Wei Sun, On universal sums of polygonal numbers, Sci. China Math. 58(2015), no. 7, 1367-1396.
- Zhi-Wei Sun, On x(ax+1)+y(by+1)+z(cz+1) and x(ax+b)+y(ay+c)+z(az+d), J. Number Theory 171(2017), 275-283.
- Zhi-Wei Sun, On universal sums x(ax+b)/2+y(cy+d)/2+z(ez+f)/2, arXiv:1502.03056 [math.NT], 2015-2017.
- Zhi-Wei Sun, Riddles of Representations of Integers, presentation to Nanjing Normal Univ. (China, 2019).
- Hai-Liang Wu and Zhi-Wei Sun, Some universal quadratic sums over the integers, arXiv:1707.06223 [math.NT], 2017.
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];Do[r=0;Do[If[SQ[24(n-x^2-15y^2)+1],r=r+1],{x,0,Sqrt[n]},{y,0,Sqrt[(n-x^2)/15]}];Print[n," ",r],{n,0,80}]
Comments