A287668 Number of set partitions of [n] such that j is member of block b only if b = 1 or at least one of j-1, ..., j-5 is member of a block >= b-1.
1, 1, 2, 5, 15, 52, 203, 877, 4139, 21107, 115301, 670059, 4119316, 26665103, 181031235, 1284643851, 9500643629, 73037739470, 582346938182, 4805997066022, 40980051074202, 360452146946076, 3265691382361850, 30435437254066599, 291431082211368120
Offset: 0
Keywords
Examples
a(8) = 4139 = 4140 - 1 = A000110(8) - 1 counts all set partitions of [8] except: 134567|2|8.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..55
Programs
-
Maple
b:= proc(n, l) option remember; `if`(n=0, 1, add(b(n-1, [seq(max(l[i], j), i=2..nops(l)), j]), j=1..l[1]+1)) end: a:= n-> b(n, [0$5]): seq(a(n), n=0..24);
-
Mathematica
b[n_, l_] := b[n, l] = If[n == 0, 1, Sum[b[n - 1, Append[Table[Max[l[[i]], j], {i, 2, Length[l]}], j]], {j, 1, l[[1]] + 1}]]; a[n_] := b[n, Table[0, {5}]]; a /@ Range[0, 24] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)