cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287697 Triangle read by rows, (Sum_{k=0..n} T[n,k]*x^k) / (1-x)^(n+1) are generating functions of the columns of A287698.

Original entry on oeis.org

1, 0, 1, 0, 1, 7, 0, 1, 52, 163, 0, 1, 341, 4499, 8983, 0, 1, 2246, 98256, 660746, 966751, 0, 1, 15177, 2045282, 35677082, 155729277, 179781181, 0, 1, 104952, 42658239, 1754605504, 17446464519, 55690144728, 53090086057
Offset: 0

Views

Author

Peter Luschny, May 30 2017

Keywords

Examples

			Triangle starts:
0: [1]
1: [0, 1]
2: [0, 1,      7]
3: [0, 1,     52,      163]
4: [0, 1,    341,     4499,       8983]
5: [0, 1,   2246,    98256,     660746,      966751]
6: [0, 1,  15177,  2045282,   35677082,   155729277,   179781181]
7: [0, 1, 104952, 42658239, 1754605504, 17446464519, 55690144728, 53090086057]
...
Let q4(x) = (x + 341*x^2 + 4499*x^3 + 8983*x^4) / (1-x)^5 then the coefficients of the series expansion of q4 are column 4 of A287698.
		

Crossrefs

Programs

  • Maple
    A287697_row := n -> Delta(A287696_poly(n), n): # Delta defined in A287315.
    for n from 0 to 9 do A287697_row(n) od;
    A287697_eulerian := (n,x) -> add(A287697_row(n)[k+1]*x^k,k=0..n)/(1-x)^(n+1):
    for n from 0 to 4 do A287697_eulerian(n,x) od;

Formula

T(n,n) = A212856(n).
Sum_{k=0..n} T(n,k) = A000442(n).