A287698 Square array A(n,k) = (n!)^3 [x^n] hypergeom([], [1, 1], z)^k read by antidiagonals.
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 10, 1, 0, 1, 4, 27, 56, 1, 0, 1, 5, 52, 381, 346, 1, 0, 1, 6, 85, 1192, 6219, 2252, 1, 0, 1, 7, 126, 2705, 36628, 111753, 15184, 1, 0, 1, 8, 175, 5136, 124405, 1297504, 2151549, 104960, 1, 0
Offset: 0
Examples
Array starts: k\n| 0 1 2 3 4 5 6 7 ---|------------------------------------------------------------------- k=0| 1, 0, 0, 0, 0, 0, 0, 0, ... A000007 k=1| 1, 1, 1, 1, 1, 1, 1, 1, ... A000012 k=2| 1, 2, 10, 56, 346, 2252, 15184, 104960, ... A000172 k=3| 1, 3, 27, 381, 6219, 111753, 2151549, 43497891, ... A141057 k=4| 1, 4, 52, 1192, 36628, 1297504, 50419096, 2099649808, ... A287699 k=5| 1, 5, 85, 2705, 124405, 7120505, 464011825, 33031599725, ... k=6| 1, 6, 126, 5136, 316206, 25461756, 2443835736, 263581282656, ... A001107,A287702,A287700, A287701, A055733
Crossrefs
Programs
-
Maple
A287698_row := (k, len) -> seq(A287696_poly(j)(k), j=0..len): A287698_row := proc(k, len) hypergeom([], [1, 1], x): series(%^k, x, len); seq((i!)^3*coeff(%, x, i), i=0..len-1) end: for k from 0 to 6 do A287698_row(k, 9) od; A287698_col := proc(n, len) local k, x; hypergeom([], [1, 1], z); series(%^x, z=0, n+1): unapply(n!^3*coeff(%, z, n), x); seq(%(j), j=0..len) end: for n from 0 to 7 do A287698_col(n, 9) od;
-
Mathematica
Table[Table[SeriesCoefficient[HypergeometricPFQ[{},{1,1},x]^k, {x, 0, n}] (n!)^3, {n, 0, 6}], {k, 0, 9}] (* as a table of rows *)
Comments