A287697
Triangle read by rows, (Sum_{k=0..n} T[n,k]*x^k) / (1-x)^(n+1) are generating functions of the columns of A287698.
Original entry on oeis.org
1, 0, 1, 0, 1, 7, 0, 1, 52, 163, 0, 1, 341, 4499, 8983, 0, 1, 2246, 98256, 660746, 966751, 0, 1, 15177, 2045282, 35677082, 155729277, 179781181, 0, 1, 104952, 42658239, 1754605504, 17446464519, 55690144728, 53090086057
Offset: 0
Triangle starts:
0: [1]
1: [0, 1]
2: [0, 1, 7]
3: [0, 1, 52, 163]
4: [0, 1, 341, 4499, 8983]
5: [0, 1, 2246, 98256, 660746, 966751]
6: [0, 1, 15177, 2045282, 35677082, 155729277, 179781181]
7: [0, 1, 104952, 42658239, 1754605504, 17446464519, 55690144728, 53090086057]
...
Let q4(x) = (x + 341*x^2 + 4499*x^3 + 8983*x^4) / (1-x)^5 then the coefficients of the series expansion of q4 are column 4 of A287698.
A287696
Triangle read by rows, T(n,k) = (n!)^3 * [x^k] [z^n] hypergeom([], [1, 1], z)^x for n>=0, 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, -3, 4, 0, 46, -81, 36, 0, -1899, 3916, -2592, 576, 0, 163476, -375375, 305500, -108000, 14400, 0, -25333590, 63002191, -58725000, 26370000, -5832000, 518400, 0, 6412369860, -16976577828, 17470973569, -9168390000, 2636298000, -400075200, 25401600
Offset: 0
0: [1]
1: [0, 1]
2: [0, -3, 4]
3: [0, 46, -81, 36]
4: [0, -1899, 3916, -2592, 576]
5: [0, 163476, -375375, 305500, -108000, 14400]
6: [0, -25333590, 63002191, -58725000, 26370000, -5832000, 518400]
-
A287696_row := proc(n) local k; hypergeom([],[1,1],z); series(%^x, z=0, n+1):
n!^3*coeff(%, z, n); seq(coeff(%, x, k), k=0..n) end:
for n from 0 to 8 do A287696_row(n) od;
A287696_poly := proc(n) local k, x; hypergeom([],[1,1],z); series(%^x, z=0, n+1):
unapply(n!^3*coeff(%, z, n), x); end:
for n from 0 to 7 do A287696_poly(n) od;
-
T[n_, k_] := (n!)^3 SeriesCoefficient[HypergeometricPFQ[{}, {1, 1}, z]^x, {x, 0, k}, {z, 0, n}];
Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 13 2017 *)
A287699
a(n) = (n!)^3 * [x^n] hypergeom([], [1, 1], x)^4.
Original entry on oeis.org
1, 4, 52, 1192, 36628, 1297504, 50419096, 2099649808, 92239977748, 4225417349872, 200149545055552, 9743739840316288, 485293084757188504, 24641572224240907264, 1272101807179840322416, 66620238759427147324192, 3532989709864148362611988, 189447449844340069835395984
Offset: 0
-
A287699_list := proc(len) series(hypergeom([], [1, 1], x)^4, x, len);
seq((n!)^3*coeff(%, x, n), n=0..len-1) end: A287699_list(18);
-
Table[SeriesCoefficient[HypergeometricPFQ[{},{1,1},x]^4, {x,0,n}] n!^3, {n,0,17}]
A287700
a(n) = (4!)^3 * [z^4] hypergeom([], [1,1], z)^n.
Original entry on oeis.org
0, 1, 346, 6219, 36628, 124405, 316206, 672511, 1267624, 2189673, 3540610, 5436211, 8006076, 11393629, 15756118, 21264615, 28104016, 36473041, 46584234, 58663963, 72952420, 89703621, 109185406, 131679439, 157481208, 186900025, 220259026, 257895171, 300159244
Offset: 0
-
[-1899*n + 3916*n^2 - 2592*n^3 + 576*n^4: n in [0..30]]; // Vincenzo Librandi, Jul 20 2017
-
a := n -> -1899*n + 3916*n^2 - 2592*n^3 + 576*n^4: seq(a(n), n=0..27);
-
Table[-1899 n + 3916 n^2 - 2592 n^3 + 576 n^4, {n, 0, 30}] (* Bruno Berselli, Jun 06 2017 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 346, 6219, 36628}, 30] (* Vincenzo Librandi, Jul 20 2017 *)
A287701
a(n) = (5!)^3 * [z^5] hypergeom([], [1,1], z)^n.
Original entry on oeis.org
0, 1, 2252, 111753, 1297504, 7120505, 25461756, 70250257, 163191008, 335493009, 629597260, 1100904761, 1819504512, 2871901513, 4362744764, 6416555265, 9179454016, 12820890017, 17535368268, 23544177769, 31097119520, 40474234521, 51987531772, 65982716273, 82840917024, 102980415025, 126858371276, 154972554777
Offset: 0
-
a := n -> 163476*n - 375375*n^2 + 305500*n^3 - 108000*n^4 + 14400*n^5:
seq(a(n), n=0..27);
-
Table[163476 n - 375375 n^2 + 305500 n^3 - 108000 n^4 + 14400 n^5, {n, 0, 30}] (* Bruno Berselli, Jun 06 2017 *)
LinearRecurrence[{6,-15,20,-15,6,-1},{0,1,2252,111753,1297504,7120505},30] (* Harvey P. Dale, Mar 02 2025 *)
A287702
a(n) = (3!)^3 * [z^3] hypergeom([], [1,1], z)^n.
Original entry on oeis.org
0, 1, 56, 381, 1192, 2705, 5136, 8701, 13616, 20097, 28360, 38621, 51096, 66001, 83552, 103965, 127456, 154241, 184536, 218557, 256520, 298641, 345136, 396221, 452112, 513025, 579176, 650781, 728056, 811217, 900480, 996061, 1098176, 1207041, 1322872, 1445885
Offset: 0
-
a := n -> 46*n - 81*n^2 + 36*n^3: seq(a(n), n=0..35);
-
Table[46 n - 81 n^2 + 36 n^3, {n, 0, 40}] (* Bruno Berselli, Jun 06 2017 *)
LinearRecurrence[{4,-6,4,-1},{0,1,56,381},40] (* Harvey P. Dale, Aug 20 2017 *)
Showing 1-6 of 6 results.
Comments