cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A287697 Triangle read by rows, (Sum_{k=0..n} T[n,k]*x^k) / (1-x)^(n+1) are generating functions of the columns of A287698.

Original entry on oeis.org

1, 0, 1, 0, 1, 7, 0, 1, 52, 163, 0, 1, 341, 4499, 8983, 0, 1, 2246, 98256, 660746, 966751, 0, 1, 15177, 2045282, 35677082, 155729277, 179781181, 0, 1, 104952, 42658239, 1754605504, 17446464519, 55690144728, 53090086057
Offset: 0

Views

Author

Peter Luschny, May 30 2017

Keywords

Examples

			Triangle starts:
0: [1]
1: [0, 1]
2: [0, 1,      7]
3: [0, 1,     52,      163]
4: [0, 1,    341,     4499,       8983]
5: [0, 1,   2246,    98256,     660746,      966751]
6: [0, 1,  15177,  2045282,   35677082,   155729277,   179781181]
7: [0, 1, 104952, 42658239, 1754605504, 17446464519, 55690144728, 53090086057]
...
Let q4(x) = (x + 341*x^2 + 4499*x^3 + 8983*x^4) / (1-x)^5 then the coefficients of the series expansion of q4 are column 4 of A287698.
		

Crossrefs

Programs

  • Maple
    A287697_row := n -> Delta(A287696_poly(n), n): # Delta defined in A287315.
    for n from 0 to 9 do A287697_row(n) od;
    A287697_eulerian := (n,x) -> add(A287697_row(n)[k+1]*x^k,k=0..n)/(1-x)^(n+1):
    for n from 0 to 4 do A287697_eulerian(n,x) od;

Formula

T(n,n) = A212856(n).
Sum_{k=0..n} T(n,k) = A000442(n).

A287696 Triangle read by rows, T(n,k) = (n!)^3 * [x^k] [z^n] hypergeom([], [1, 1], z)^x for n>=0, 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, -3, 4, 0, 46, -81, 36, 0, -1899, 3916, -2592, 576, 0, 163476, -375375, 305500, -108000, 14400, 0, -25333590, 63002191, -58725000, 26370000, -5832000, 518400, 0, 6412369860, -16976577828, 17470973569, -9168390000, 2636298000, -400075200, 25401600
Offset: 0

Views

Author

Peter Luschny, May 30 2017

Keywords

Comments

The polynomials Sum_{k=0..n} T(n,k) x^k generate the columns of A287698.

Examples

			0: [1]
1: [0,         1]
2: [0,        -3,        4]
3: [0,        46,      -81,        36]
4: [0,     -1899,     3916,     -2592,      576]
5: [0,    163476,  -375375,    305500,  -108000,    14400]
6: [0, -25333590, 63002191, -58725000, 26370000, -5832000, 518400]
		

Crossrefs

T(n,n) = A001044(n).

Programs

  • Maple
    A287696_row := proc(n) local k; hypergeom([],[1,1],z); series(%^x, z=0, n+1):
    n!^3*coeff(%, z, n); seq(coeff(%, x, k), k=0..n) end:
    for n from 0 to 8 do A287696_row(n) od;
    A287696_poly := proc(n) local k, x; hypergeom([],[1,1],z); series(%^x, z=0, n+1):
    unapply(n!^3*coeff(%, z, n), x); end:
    for n from 0 to 7 do A287696_poly(n) od;
  • Mathematica
    T[n_, k_] := (n!)^3 SeriesCoefficient[HypergeometricPFQ[{}, {1, 1}, z]^x, {x, 0, k}, {z, 0, n}];
    Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 13 2017 *)

Formula

Sum_{k=0..n} T(n,k) = A000012(n).
Sum_{k=0..n} abs(T(n,k)) = A212856(n) = A212855_row(3).

A287699 a(n) = (n!)^3 * [x^n] hypergeom([], [1, 1], x)^4.

Original entry on oeis.org

1, 4, 52, 1192, 36628, 1297504, 50419096, 2099649808, 92239977748, 4225417349872, 200149545055552, 9743739840316288, 485293084757188504, 24641572224240907264, 1272101807179840322416, 66620238759427147324192, 3532989709864148362611988, 189447449844340069835395984
Offset: 0

Views

Author

Peter Luschny, May 31 2017

Keywords

Crossrefs

Row 4 of A287698.

Programs

  • Maple
    A287699_list := proc(len) series(hypergeom([], [1, 1], x)^4, x, len);
    seq((n!)^3*coeff(%, x, n), n=0..len-1) end: A287699_list(18);
  • Mathematica
    Table[SeriesCoefficient[HypergeometricPFQ[{},{1,1},x]^4, {x,0,n}] n!^3, {n,0,17}]

Formula

Recurrence: (n-1)^2*n^6*(4179357*n^8 - 78014664*n^7 + 632906379*n^6 - 2915042445*n^5 + 8338804227*n^4 - 15175362645*n^3 + 17163198021*n^2 - 11033807142*n + 3088189672)*a(n) = (n-1)^2*(321810489*n^14 - 6972560595*n^13 + 68195663613*n^12 - 398723185476*n^11 + 1556210780586*n^10 - 4290176939202*n^9 + 8625424194708*n^8 - 12878626068195*n^7 + 14401770594884*n^6 - 12054703508348*n^5 + 7464118767536*n^4 - 3324818312080*n^3 + 1009161337280*n^2 - 187078472000*n + 15996099840)*a(n-1) - (4292199639*n^16 - 114458657040*n^15 + 1414085794758*n^14 - 10748138802219*n^13 + 56276210317086*n^12 - 215315257854096*n^11 + 622952233195566*n^10 - 1390775235633963*n^9 + 2422273491685843*n^8 - 3303218468438722*n^7 + 3516261474581476*n^6 - 2891864865024712*n^5 + 1801769964078784*n^4 - 822311126185120*n^3 + 259313519840640*n^2 - 50491775044480*n + 4574054714880)*a(n-2) + (n-2)^2*(41455042083*n^14 - 1064012746797*n^13 + 12496613326470*n^12 - 88977496857795*n^11 + 428877145565253*n^10 - 1479691251840690*n^9 + 3766745840954286*n^8 - 7184451834695931*n^7 + 10314626748833734*n^6 - 11091478948669399*n^5 + 8794647685753046*n^4 - 4988208446505900*n^3 + 1914324172568200*n^2 - 445291128023840*n + 47406419692800)*a(n-3) + 8*(n-3)^3*(n-2)^2*(87060185667*n^11 - 1712183651451*n^10 + 14956429421367*n^9 - 76542540324894*n^8 + 254862421705026*n^7 - 579589444734966*n^6 + 918686062982112*n^5 - 1015496680681101*n^4 + 767926983449420*n^3 - 378895216669900*n^2 + 109953142874960*n - 14239574392960)*a(n-4) - 175616*(n-4)^3*(n-3)^3*(n-2)^2*(4179357*n^8 - 44579808*n^7 + 203825727*n^6 - 521868123*n^5 + 819229437*n^4 - 808911855*n^3 + 491820735*n^2 - 168723870*n + 25050760)*a(n-5). - Vaclav Kotesovec, Jul 05 2018
a(n) ~ 2^(6*n + 5) / (3^(3/2) * Pi^3 * n^3). - Vaclav Kotesovec, Jul 05 2018

A287700 a(n) = (4!)^3 * [z^4] hypergeom([], [1,1], z)^n.

Original entry on oeis.org

0, 1, 346, 6219, 36628, 124405, 316206, 672511, 1267624, 2189673, 3540610, 5436211, 8006076, 11393629, 15756118, 21264615, 28104016, 36473041, 46584234, 58663963, 72952420, 89703621, 109185406, 131679439, 157481208, 186900025, 220259026, 257895171, 300159244
Offset: 0

Views

Author

Peter Luschny, May 31 2017

Keywords

Crossrefs

Column 4 of A287698.

Programs

  • Magma
    [-1899*n + 3916*n^2 - 2592*n^3 + 576*n^4: n in [0..30]]; // Vincenzo Librandi, Jul 20 2017
  • Maple
    a := n -> -1899*n + 3916*n^2 - 2592*n^3 + 576*n^4: seq(a(n), n=0..27);
  • Mathematica
    Table[-1899 n + 3916 n^2 - 2592 n^3 + 576 n^4, {n, 0, 30}] (* Bruno Berselli, Jun 06 2017 *)
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 346, 6219, 36628}, 30] (* Vincenzo Librandi, Jul 20 2017 *)

Formula

O.g.f.: x*(1 + 341*x + 4499*x^2 + 8983*x^3)/(1 - x)^5.
a(n) = -1899*n + 3916*n^2 - 2592*n^3 + 576*n^4.
a(n) = [x^n] (x + 341*x^2 + 4499*x^3 + 8983*x^4) / (1 - x)^5.

A287701 a(n) = (5!)^3 * [z^5] hypergeom([], [1,1], z)^n.

Original entry on oeis.org

0, 1, 2252, 111753, 1297504, 7120505, 25461756, 70250257, 163191008, 335493009, 629597260, 1100904761, 1819504512, 2871901513, 4362744764, 6416555265, 9179454016, 12820890017, 17535368268, 23544177769, 31097119520, 40474234521, 51987531772, 65982716273, 82840917024, 102980415025, 126858371276, 154972554777
Offset: 0

Views

Author

Peter Luschny, Jun 01 2017

Keywords

Crossrefs

Column 5 of A287698.

Programs

  • Maple
    a := n -> 163476*n - 375375*n^2 + 305500*n^3 - 108000*n^4 + 14400*n^5:
    seq(a(n), n=0..27);
  • Mathematica
    Table[163476 n - 375375 n^2 + 305500 n^3 - 108000 n^4 + 14400 n^5, {n, 0, 30}] (* Bruno Berselli, Jun 06 2017 *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{0,1,2252,111753,1297504,7120505},30] (* Harvey P. Dale, Mar 02 2025 *)

Formula

O.g.f.: x*(1 + 2246*x + 98256*x^2 + 660746*x^3 + 966751*x^4) / (1 - x)^6.
a(n) = 163476*n - 375375*n^2 + 305500*n^3 - 108000*n^4 + 14400*n^5.
a(n) = [x^n] (x + 2246*x^2 + 98256*x^3 + 660746*x^4 + 966751*x^5) / (1 - x)^6.

A287702 a(n) = (3!)^3 * [z^3] hypergeom([], [1,1], z)^n.

Original entry on oeis.org

0, 1, 56, 381, 1192, 2705, 5136, 8701, 13616, 20097, 28360, 38621, 51096, 66001, 83552, 103965, 127456, 154241, 184536, 218557, 256520, 298641, 345136, 396221, 452112, 513025, 579176, 650781, 728056, 811217, 900480, 996061, 1098176, 1207041, 1322872, 1445885
Offset: 0

Views

Author

Peter Luschny, Jun 01 2017

Keywords

Crossrefs

Column 3 of A287698.

Programs

  • Maple
    a := n -> 46*n - 81*n^2 + 36*n^3: seq(a(n), n=0..35);
  • Mathematica
    Table[46 n - 81 n^2 + 36 n^3, {n, 0, 40}] (* Bruno Berselli, Jun 06 2017 *)
    LinearRecurrence[{4,-6,4,-1},{0,1,56,381},40] (* Harvey P. Dale, Aug 20 2017 *)

Formula

O.g.f.: x*(1 + 52*x + 163*x^2) / (1 - x)^4.
a(n) = 46*n - 81*n^2 + 36*n^3.
a(n) = [x^n] (x + 52*x^2 + 163*x^3) / (1 - x)^4.
Showing 1-6 of 6 results.