cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A287698 Square array A(n,k) = (n!)^3 [x^n] hypergeom([], [1, 1], z)^k read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 10, 1, 0, 1, 4, 27, 56, 1, 0, 1, 5, 52, 381, 346, 1, 0, 1, 6, 85, 1192, 6219, 2252, 1, 0, 1, 7, 126, 2705, 36628, 111753, 15184, 1, 0, 1, 8, 175, 5136, 124405, 1297504, 2151549, 104960, 1, 0
Offset: 0

Views

Author

Peter Luschny, May 30 2017

Keywords

Comments

Let A_m(n,k) = (n!)^m [x^n] hypergeom([], [1,…,1], z)^k where [1,…,1] lists (m-1) times 1. These arrays can be seen as generalizations of the power functions n^k. For m = 1 -> A003992, m = 2 -> A287316, m = 3 -> A287698.
A_m(n,n) is the sum of m-th powers of coefficients in the full expansion of (z_1+z_2+...+z_n)^n (compare A245397).
A287696 provide polynomials and A287697 rational functions generating the columns of the array.

Examples

			Array starts:
k\n| 0  1    2       3       4         5           6             7
---|-------------------------------------------------------------------
k=0| 1, 0,   0,      0,      0,        0,          0,            0, ... A000007
k=1| 1, 1,   1,      1,      1,        1,          1,            1, ... A000012
k=2| 1, 2,  10,     56,    346,     2252,      15184,       104960, ... A000172
k=3| 1, 3,  27,    381,   6219,   111753,    2151549,     43497891, ... A141057
k=4| 1, 4,  52,   1192,  36628,  1297504,   50419096,   2099649808, ... A287699
k=5| 1, 5,  85,   2705, 124405,  7120505,  464011825,  33031599725, ...
k=6| 1, 6, 126,   5136, 316206, 25461756, 2443835736, 263581282656, ...
       A001107,A287702,A287700,  A287701,                               A055733
		

Crossrefs

Rows: A000007 (k=0), A000012 (k=1), A000172 (k=2), A141057 (k=3), A287699 (k=4).
Columns: A000172 (n=1), A001477(n=1), A001107 (n=2), A287702 (n=3), A287700 (n=4), A287701 (n=5).

Programs

  • Maple
    A287698_row := (k, len) -> seq(A287696_poly(j)(k), j=0..len):
    A287698_row := proc(k, len) hypergeom([], [1, 1], x):
    series(%^k, x, len); seq((i!)^3*coeff(%, x, i), i=0..len-1) end:
    for k from 0 to 6 do A287698_row(k, 9) od;
    A287698_col := proc(n, len) local k, x; hypergeom([], [1, 1], z);
    series(%^x, z=0, n+1): unapply(n!^3*coeff(%, z, n), x); seq(%(j), j=0..len) end:
    for n from 0 to 7 do A287698_col(n, 9) od;
  • Mathematica
    Table[Table[SeriesCoefficient[HypergeometricPFQ[{},{1,1},x]^k, {x, 0, n}] (n!)^3, {n, 0, 6}], {k, 0, 9}] (* as a table of rows *)

A336622 a(n) = Sum_{k=0..n} Sum_{i=0..k} Sum_{j=0..i} (binomial(n,k) * binomial(k,i) * binomial(i,j))^n.

Original entry on oeis.org

1, 4, 28, 1192, 591460, 3441637504, 219272057247376, 185528149944660881488, 2405748000504972140803769860, 349789137657321307953339196885516144, 652520795984468974632890750361094911319873648
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 29 2020

Keywords

Crossrefs

Programs

  • Magma
    B:=Binomial; [(&+[(&+[(&+[(B(n,j)*B(n-j,k-j)*B(k-j,k-i))^n: j in [0..i]]): i in [0..k]]): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 31 2022
    
  • Mathematica
    Table[Sum[Sum[Sum[(Binomial[n, k] Binomial[k, i] Binomial[i, j])^n, {j, 0, i}], {i, 0, k}], {k, 0, n}], {n, 0, 10}]
    Table[(n!)^n SeriesCoefficient[Sum[x^k/(k!)^n, {k, 0, n}]^4, {x, 0, n}], {n, 0, 10}]
  • SageMath
    b=binomial
    def A336622(n): return sum(sum(sum( (b(n,j)*b(n-j,k-j)*b(k-j,k-i))^n for j in (0..i)) for i in (0..k)) for k in (0..n))
    [A336622(n) for n in (0..20)] # G. C. Greubel, Aug 31 2022

Formula

a(n) = (n!)^n * [x^n] (Sum_{k>=0} x^k / (k!)^n)^4.
Showing 1-2 of 2 results.