cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287703 Triangle read by rows, numerators of T(n,k) = (-1)^n*binomial(n-1,k)*Bernoulli(n+k)/ (n+k) for n>=1, 0<=k<=n-1.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, -1, 0, 1, 0, 0, -1, 0, 1, 0, 1, 0, -1, 0, 5, 0, 0, 1, 0, -5, 0, 691, 0, -1, 0, 7, 0, -691, 0, 7, 0, 0, -2, 0, 691, 0, -14, 0, 3617, 0, 1, 0, -691, 0, 21, 0, -25319, 0, 43867, 0, 0, 691, 0, -10, 0, 75957, 0, -438670, 0, 174611, 0
Offset: 1

Views

Author

Peter Luschny, Jun 21 2017

Keywords

Comments

For the rational triangle the reciprocals of the row sums are the Apéry numbers A005430.

Examples

			The rational triangle starts (with row sums at the end of the line):
1: [1/2], 1/2
2: [1/12, 0], 1/12
3: [0, 1/60, 0], 1/60
4: [-1/120, 0, 1/84, 0], 1/280
5: [0, -1/63, 0, 1/60, 0], 1/1260
6: [1/252, 0, -1/24, 0, 5/132, 0], 1/5544
7: [0, 1/40, 0, -5/33, 0, 691/5460, 0], 1/24024
8: [-1/240, 0, 7/44, 0, -691/936, 0, 7/12, 0], 1/102960
9: [0, -2/33, 0, 691/585, 0, -14/3, 0, 3617/1020, 0], 1/437580
The numerators of the triangle are:
1: [ 1]
2: [ 1,  0]
3: [ 0,  1,  0]
4: [-1,  0,  1,   0]
5: [ 0, -1,  0,   1,    0]
6: [ 1,  0, -1,   0,    5,   0]
7: [ 0,  1,  0,  -5,    0, 691, 0]
8: [-1,  0,  7,   0, -691,   0, 7,   0]
9: [ 0, -2,  0, 691,    0, -14, 0, 3617, 0]
		

Crossrefs

Cf. A005430 (Apéry), A287704 (denominators).

Programs

  • Maple
    T := (n,k) -> numer((-1)^n*binomial(n-1,k)*bernoulli(k+n)/(k+n)):
    for n from 1 to 9 do seq(T(n,k), k=0..n-1) od;
  • Mathematica
    T[n_, k_]:=Numerator[(-1)^n*Binomial[n - 1, k] BernoulliB[k + n]/(k + n)]; Table[T[n, k], {n, 11}, {k, 0, n - 1}]//Flatten (* Indranil Ghosh, Jul 27 2017 *)
  • PARI
    T(n, k) = numerator((-1)^n*binomial(n-1,k)*bernfrac(k+n)/(k+n));
    tabl(nn) = for (n=1, nn, for (k=0, n-1, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 28 2017

Formula

A005430(n) = 1 / (Sum_{k=0..n-1} T(n,k)) for n>=1.