A287729 The c-fusc function c(n) = a(n): a(1)=1, a(2n) = s(n), a(2n+1) = s(n)+s(n+1), where s(n) = A287730(n).
1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 3, 2, 3, 1, 2, 1, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 6, 5, 9, 4, 11, 7, 10, 3, 11, 8, 13, 5, 12, 7, 9, 2, 9, 7, 12, 5, 13, 8, 11, 3, 10, 7, 11, 4, 9, 5, 6, 1, 5, 4, 7, 3
Offset: 1
Examples
A000027(n) chf(n) A070939(n) A002487(n) a(n) A287730(n) fusc c-fusc s-fusc 01 '-' 1 1 1 0 02 '+' 2 1 0 1 03 '+-' 2 2 1 1 04 '-' 3 1 1 0 05 '--+' 3 3 2 1 06 '-+' 3 2 1 1 07 '-++' 3 3 1 2 08 '+' 4 1 0 1 09 '+++-' 4 4 1 3 10 '++-' 4 3 1 2 11 '++-+-' 4 5 2 3 12 '+-' 4 2 1 1 13 '+-+--' 4 5 3 2 14 '+--' 4 3 2 1 15 '+---' 4 4 3 1 16 '-' 5 1 1 0 17 '----+' 5 5 4 1
Links
- I. V. Serov (terms 1..1025) & Antti Karttunen, Table of n, a(n) for n = 1..8192
- Index entries for sequences related to Stern's sequences
Crossrefs
Programs
-
Python
from sympy.core.cache import cacheit @cacheit def c(n): return 1 if n==1 else s(n//2) if n%2==0 else s((n - 1)//2) + s((n + 1)//2) @cacheit def s(n): return 0 if n==1 else c(n//2) if n%2==0 else c((n - 1)//2) + c((n + 1)//2) print([c(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 08 2017
-
Scheme
(definec (A287729 n) (cond ((= 1 n) n) ((even? n) (A287730 (/ n 2))) (else (+ (A287730 (/ (- n 1) 2)) (A287730 (/ (+ n 1) 2)))))) ;; An implementation of memoization-macro definec can be found for example in: http://oeis.org/wiki/Memoization - Antti Karttunen, Jun 01 2017
Formula
The mutual diatomic recurrence pair c(n) (this sequence) and s(n) (A287730) are defined by c(1)=1, s(1)=0, c(2n) = s(n), c(2n+1) = s(n)+s(n+1), s(2n) = c(n), s(2n+1) = c(n)+c(n+1).
Let d(n) = 2*A255738(n)*(-1)^A070939(n) = 2*(n==2^(A070939(n)-1)+1)*(-1)^A070939(n) = 2*(n==A053644(n)+1)*(-1)^A070939(n) = 2*(A002487(n-1)==1)*(-1)^A070939(n) for n > 1;
then a(n) = k(n-1)*a(n-1) - a(n-2) + d(n) for n > 2 with a(1) = 1, a(2) = 0.
From Yosu Yurramendi, Apr 09 2019: (Start)
For m >= 0, m even, 0 <= k < 2^m, a(2^m+k) = A002487(2^m-k).
For m >= 0, m odd, 0 <= k < 2^m, a(2^m+k) = A002487(k).
(End)
Comments