cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287765 Period 4: repeat [1, 3, 5, 3].

Original entry on oeis.org

1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1
Offset: 1

Views

Author

Robert G. Wilson v, May 31 2017

Keywords

Crossrefs

Inspired by the first difference of A108752.

Programs

  • Mathematica
    PadRight[{}, 105, {1, 3, 5, 3}]
    CoefficientList[Series[(3 x^2 + 2 x + 1)/(-x^3 + x^2 - x + 1), {x, 0, 104}], x]
    LinearRecurrence[{1, -1, 1}, {1, 3, 5}, 105]
    RecurrenceTable[{a[n] == a[n - 1] - a[n - 2] + a[n - 3], a[1] == 1, a[2] == 3, a[3] == 5}, a, {n, 105}]
    Table[{1, 3, 5, 3}, 10] // Flatten (* Eric W. Weisstein, Feb 07 2025 *)
    Table[3 - 2 Sin[n Pi/2], {n, 20}] (* Eric W. Weisstein, Feb 07 2025 *)
    3 - 2 Sin[Range[20] Pi/2] (* Eric W. Weisstein, Feb 07 2025 *)

Formula

G.f.: x * (3*x^2+2*x+1) / (1-x+x^2-x^3). [Corrected by Georg Fischer, May 19 2019]
a(n) = a(n-1) - a(n-2) + a(n-3) with a(1)=1, a(2)=3 and a(3)=5.
a(2n) = 3, a(4*n+1) = 1 and a(4*n+3) = 5.
a(n) = ((n+3) mod 4) + ((n+4) mod 4). - Aaron J Grech, Aug 30 2024