A287930 Numbers m such that for any positive integers (x, y), if x * y = m where x <= y, then x^2 + 2*y^2 is a prime number.
1, 3, 21, 33, 93, 105, 123, 177, 219, 237, 321, 417, 489, 537, 633, 699, 813, 951, 1011, 1299, 1419, 1641, 1923, 1959, 2073, 2211, 2433, 2661, 3387, 3453, 3489, 3741, 3981, 4083, 4377, 4461, 4467, 4827, 4911, 5007, 5997, 6423, 6621, 7467, 7647, 7881, 8031, 8061
Offset: 1
Keywords
Examples
105 = 1*105 = 3*35 = 5*21 = 7*15 => 1^2 + 2*105^2 = 22051, 3^2 + 2*35^2 = 2459, 5^2 + 2*21^2 = 907 and 7^2 + 2*15^2 = 499 are primes.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(m) andmap(x -> isprime(x^2 + 2*(m/x)^2), select(t -> t^2 <= m,numtheory:-divisors(m))); end proc: select(filter, [1, seq(i,i=3..10000,3)]); # Robert Israel, Jul 13 2017
-
Mathematica
t={};Do[ds=Divisors[n];If[EvenQ[Length[ds]],ok=True;k=1;While[k<=Length[ds]/2&&(ok=PrimeQ[ds[[k]]^2+2*ds[[-k]]^2]),k++];If[ok,AppendTo[t,n]]],{n,2,10^4}];t
Extensions
Edited by Robert Israel, Jul 13 2017
Comments