A287831 Number of sequences over the alphabet {0,1,...,9} such that no two consecutive terms have distance 8.
1, 10, 96, 924, 8892, 85572, 823500, 7924932, 76265388, 733938084, 7063035084, 67970944260, 654116708844, 6294876045156, 60578584659468, 582976518206148, 5610260171812140, 53990200655546148, 519573366930788172, 5000101506310370436, 48118353758378062956
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (9,6).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{9, 6}, {1, 10}, 30]
-
Python
def a(n): if n in [0, 1]: return [1, 10][n] return 9*a(n-1)+6*a(n-2)
Formula
a(n) = 9*a(n-1) + 6*a(n-2), a(0)=1, a(1)=10.
G.f.: (-1 - x)/(-1 + 9*x + 6*x^2).
a(n) = ((1 - 11/sqrt(105))/2)*((9 - sqrt(105))/2)^n + ((1 + 11/sqrt(105))/2)*((9 + sqrt(105))/2)^n.
Comments