A287843 Number of Dyck paths of semilength n such that each level with peaks has exactly two peaks.
1, 0, 1, 1, 2, 5, 15, 27, 76, 196, 548, 1388, 3621, 9894, 27553, 75346, 205634, 563729, 1565409, 4370226, 12191929, 33980329, 94874987, 265668404, 745652478, 2095025688, 5889310438, 16565399257, 46633521554, 131388795335, 370434641340, 1044917168292
Offset: 0
Keywords
Examples
. a(2) = 1: /\/\ . . . a(3) = 1: /\/\ . / \ . . . a(4) = 2: /\/\ . /\ /\ / \ . / \/ \ / \ . . . a(5) = 5: /\/\ . /\ /\ / \ . /\/\ /\/\ /\/\ / \/ \ / \ . /\/\/ \ /\/ \/\ / \/\/\ / \ / \ .
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Wikipedia, Counting lattice paths
Programs
-
Maple
b:= proc(n, j) option remember; `if`(n=j or n=0, 1, add(b(n-j, i)*(binomial(j-1, i-1) +i*(i-1)/2* binomial(j-1, i-3)), i=1..min(j+3, n-j))) end: a:= n-> b(n, 2): seq(a(n), n=0..35);
-
Mathematica
b[n_, j_] := b[n, j] = If[n == j || n == 0, 1, Sum[b[n - j, i]*(Binomial[j - 1, i-1] + i*(i-1)/2*Binomial[j-1, i-3]), {i, 1, Min[j + 3, n - j]}]]; a[n_] := b[n, 2]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, May 25 2018, translated from Maple *)