A287860 Number of Dyck paths of semilength 2n such that the maximal number of peaks per level equals n.
1, 1, 7, 29, 163, 925, 5580, 34751, 222627, 1456952, 9699872, 65474460, 446971110, 3080074508, 21393773841, 149614083615, 1052537452164, 7443584137525, 52888757972865, 377382278671610, 2703141489113003, 19430405608302831, 140118758417377105
Offset: 0
Keywords
Examples
. /\ /\ /\/\ . a(2) = 7: /\/\/ \ /\/ \/\ /\/ \ . . /\/\ . /\ /\ /\ /\/\ / \ . / \/\/\ / \/ \ / \/\ / \ .
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..100
- Wikipedia, Counting lattice paths
Crossrefs
Cf. A287822.
Programs
-
Maple
b:= proc(n, k, j) option remember; `if`(j=n, 1, add( b(n-j, k, i)*add(binomial(i, m)*binomial(j-1, i-1-m), m=max(0, i-j)..min(k, i-1)), i=1..min(j+k, n-j))) end: g:= proc(n, k) option remember; add(b(n, k, j), j=1..k) end: a:= n-> `if`(n=0, 1, g(2*n, n)-g(2*n, n-1)): seq(a(n), n=0..23);
-
Mathematica
b[n_, k_, j_] := b[n, k, j] = If[j == n, 1, Sum[b[n - j, k, i]*Sum[ Binomial[i, m] * Binomial[j - 1, i - 1 - m], {m, Max[0, i - j], Min[k, i - 1]}], {i, 1, Min[j + k, n - j]}]]; g[n_, k_] := g[n, k] = Sum[b[n, k, j], {j, 1, k}]; a[n_] := If[n == 0, 1, g[2*n, n] - g[2*n, n - 1]]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jun 02 2018, from Maple *)
Formula
a(n) = A287822(2n,n).