cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287901 Number of Dyck paths of semilength n such that each positive level up to the highest nonempty level has at least one peak.

Original entry on oeis.org

1, 1, 1, 3, 6, 17, 49, 147, 459, 1476, 4856, 16282, 55466, 191474, 668510, 2356944, 8380944, 30025814, 108289093, 392871484, 1432934360, 5251507624, 19329771911, 71430479820, 264914270527, 985737417231, 3679051573264, 13769781928768, 51670641652576
Offset: 0

Views

Author

Alois P. Heinz, Jun 02 2017

Keywords

Examples

			. a(3) = 3:
.                   /\      /\
.      /\/\/\    /\/  \    /  \/\ .
.
. a(4) = 6:
.                    /\      /\        /\/\    /\        /\/\
.     /\/\/\/\  /\/\/  \  /\/  \/\  /\/    \  /  \/\/\  /    \/\ .
		

Crossrefs

Column k=1 of A288386.

Programs

  • Mathematica
    b[n_, k_, j_]:=b[n, k, j]=If[j==n, 1, Sum[Sum[Binomial[i, m] Binomial[j - 1, i - 1 - m], {m, Max[k, i - j], i - 1}] b[n - j, k, i], {i, n - j}]];  a[n_]:=If[n==0, 1, Sum[b[n, 1, j], {j, n}]];Table[a[n], {n, 0, 30}] (* Indranil Ghosh, Aug 09 2017 *)
  • Python
    from sympy.core.cache import cacheit
    from sympy import binomial
    @cacheit
    def b(n, k, j): return 1 if j==n else sum([sum([binomial(i, m)*binomial(j - 1, i - 1 - m) for m in range(max(k, i - j), i)])*b(n - j, k, i) for i in range(1, n - j + 1)])
    def a(n): return 1 if n==0 else sum([b(n, 1, j) for j in range(1, n + 1)])
    print([a(n) for n in range(31)]) # Indranil Ghosh, Aug 09 2017