A287918 Union of nonprime 1 <= t <= m for m in A036913, with gcd(t,m) = 1.
1, 25, 35, 49, 55, 65, 77, 85, 91, 95, 115, 119, 121, 125, 133, 143, 145, 155, 161, 169, 185, 187, 203, 205, 209, 215, 217, 221, 235, 247, 253, 259, 265, 287, 289, 295, 299, 301, 305, 319, 323, 325, 329, 335, 341, 343, 355, 361, 365, 371, 377, 391, 395, 403
Offset: 1
Keywords
Examples
From _Michael De Vlieger_, Jun 14 2017: (Start) List of nonprime totatives 1 <= t <= m for m <= 210 in A036913: m: 1 <= t <= m 2: 1; 6: 1; 12: 1; 18: 1; 30: 1; 42: 1, 25; 60: 1, 49; 66: 1, 25, 35, 49, 65; 90: 1, 49, 77; 120: 1, 49, 77, 91, 119; 126: 1, 25, 55, 65, 85, 95, 115, 121, 125; 150: 1, 49, 77, 91, 119, 121, 133, 143; 210: 1, 121, 143, 169, 187, 209; ... Indices of A036913 of first and last terms m such that gcd(a(n),m)=1: n a(n) Freq. First Last ------------------------------- 1 1 oo 1 oo 2 25 4 6 18 3 35 1 8 8 4 49 14 7 40 5 55 1 11 11 6 65 3 8 18 7 77 8 9 24 8 85 2 11 18 9 91 11 10 40 10 95 2 11 18 11 115 2 11 18 12 119 9 10 27 13 121 75 11 308 14 125 2 11 18 15 133 10 12 40 16 143 36 12 107 17 145 1 18 18 18 155 1 18 18 19 161 8 14 40 20 169 96 13 248 ... Positions of squared primes q^2 in a(n): q^2 q n a(n) sqrt(a(n)) k m = A036913(k) ---------------------------------------------- 2 25 5 6 42 4 49 7 7 60 13 121 11 11 126 20 169 13 13 210 35 289 17 16 330 48 361 19 17 420 71 529 23 20 630 107 841 29 25 1050 123 961 31 25 1050 173 1369 37 28 1470 210 1681 41 30 1890 234 1849 43 30 1890 283 2209 47 31 2310 303 2401 49 40 5610 359 2809 53 33 2940 456 3481 59 35 3570 486 3721 61 36 3990 598 4489 67 37 4620 676 5041 71 39 5460 721 5329 73 39 5460 ... (End)
Programs
-
Mathematica
With[{nn = 403, s = Union@FoldList[Max, Values[#][[All, -1]]] &@ KeySort@ PositionIndex@ EulerPhi@ Range[Product[Prime@ i, {i, 8}]]}, Union@ Flatten@ Map[Function[n, Select[Range@ Min[n, nn], And[CoprimeQ[#, n], ! PrimeQ@ #] &]], s]] (* Michael De Vlieger, Jun 14 2017 *)
Comments