A287957 Table read by antidiagonals: T(n, k) = greatest common recursive divisor of n and k; n > 0 and k > 0.
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 2, 1, 2, 5, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 7, 2, 1
Offset: 1
Examples
Table starts: n\k| 1 2 3 4 5 6 7 8 9 10 ---+----------------------------------------------- 1 | 1 1 1 1 1 1 1 1 1 1 ... 2 | 1 2 1 2 1 2 1 2 1 2 ... 3 | 1 1 3 1 1 3 1 1 3 1 ... 4 | 1 2 1 4 1 2 1 2 1 2 ... 5 | 1 1 1 1 5 1 1 1 1 5 ... 6 | 1 2 3 2 1 6 1 2 3 2 ... 7 | 1 1 1 1 1 1 7 1 1 1 ... 8 | 1 2 1 2 1 2 1 8 1 2 ... 9 | 1 1 3 1 1 3 1 1 9 1 ... 10 | 1 2 1 2 5 2 1 2 1 10 ... ... T(4, 8) = T(2^2, 2^3) = 2.
Links
- Rémy Sigrist, First 100 antidiagonals of array, flattened
- Rémy Sigrist, Illustration of the first terms
Programs
-
PARI
T(n,k) = my (g=factor(gcd(n,k))); return (prod(i=1, #g~, g[i,1]^T(valuation(n, g[i,1]), valuation(k, g[i,1]))))
Comments