A287958 Table read by antidiagonals: T(n, k) = least recursive multiple of n and k; n > 0 and k > 0.
1, 2, 2, 3, 2, 3, 4, 6, 6, 4, 5, 4, 3, 4, 5, 6, 10, 12, 12, 10, 6, 7, 6, 15, 4, 15, 6, 7, 8, 14, 6, 20, 20, 6, 14, 8, 9, 8, 21, 12, 5, 12, 21, 8, 9, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 11, 10, 9, 64, 35, 6, 35, 64, 9, 10, 11, 12, 22, 30, 36, 40, 42, 42, 40
Offset: 1
Examples
Table starts: n\k| 1 2 3 4 5 6 7 8 9 10 ---+----------------------------------------------- 1 | 1 2 3 4 5 6 7 8 9 10 ... 2 | 2 2 6 4 10 6 14 8 18 10 ... 3 | 3 6 3 12 15 6 21 24 9 30 ... 4 | 4 4 12 4 20 12 28 64 36 20 ... 5 | 5 10 15 20 5 30 35 40 45 10 ... 6 | 6 6 6 12 30 6 42 24 18 30 ... 7 | 7 14 21 28 35 42 7 56 63 70 ... 8 | 8 8 24 64 40 24 56 8 72 40 ... 9 | 9 18 9 36 45 18 63 72 9 90 ... 10 | 10 10 30 20 10 30 70 40 90 10 ... ... T(4, 8) = T(2^2, 2^3) = 2^(2*3) = 2^6 = 64.
Links
- Rémy Sigrist, First 100 antidiagonals of array, flattened
- Rémy Sigrist, Illustration of the first terms
Programs
-
PARI
T(n,k) = if (n*k==0, return (max(n,k))); my (g=factor(lcm(n,k))); return (prod(i=1, #g~, g[i,1]^T(valuation(n, g[i,1]), valuation(k, g[i,1]))))
Comments