A287964 Coefficients in expansion of 1/E_14.
1, 24, 197208, 47715936, 42451725912, 18015200386704, 10924205579505504, 5511557851517150400, 3039496830486964153944, 1604976096786795234999096, 865212805864755380070382608, 461861254217266216545148291872
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..366
Crossrefs
Programs
-
Mathematica
terms = 12; Ei[n_] = 1-(2n/BernoulliB[n]) Sum[k^(n-1) x^k/(1-x^k), {k, terms}]; CoefficientList[1/Ei[14] + O[x]^terms, x] (* Jean-François Alcover, Mar 01 2018 *)
Formula
a(n) ~ c * exp(2*Pi*n), where c = 512 * Gamma(3/4)^32 / (81 * Pi^8) = 0.445315094156993820198784527343140685155693441915367780875399576353998457... - Vaclav Kotesovec, Jul 02 2017, updated Mar 07 2018