cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A287993 Number of Dyck paths of semilength n such that all positive levels up to the highest level have a positive number of peaks and all the level peak numbers are distinct.

Original entry on oeis.org

1, 1, 1, 1, 6, 10, 21, 52, 147, 564, 1651, 4440, 12499, 36853, 116476, 390774, 1352215, 4593736, 15057127, 48419013, 156073723, 511324062, 1713185811, 5878350249, 20574046540, 72771206715, 257475113013, 905430711156, 3160767910928, 10981916671027
Offset: 0

Views

Author

Alois P. Heinz, Jun 04 2017

Keywords

Examples

			a(4) = 6:
                     /\      /\      /\          /\/\    /\/\
      /\/\/\/\  /\/\/  \  /\/  \/\  /  \/\/\  /\/    \  /    \/\
		

Crossrefs

Programs

  • Maple
    b:= proc(n, s, j) option remember; `if`(n=j, 1, add(add(
           b(n-j, s union {t}, i)*binomial(i, t)*binomial(j-1, i-1-t),
           t={$max(1, i-j)..min(n-j, i-1)} minus s), i=1..n-j))
        end:
    a:= n-> `if`(n=0, 1, add(b(n, {k}, k), k=1..n)):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, s_, j_] := b[n, s, j] = If[n==j, 1, Sum[Sum[b[n-j, s ~Union~ {t}, i]* Binomial[i, t]*Binomial[j-1, i-1-t], {t, Range[Max[1, i - j], Min[n - j, i - 1]] ~Complement~ s}], {i, 1, n - j}]];
    a[n_] := If[n == 0, 1, Sum[b[n, {k}, k], {k, 1, n}]];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 31 2018, from Maple *)
Showing 1-1 of 1 results.