A288071 a(n) is the number of rooted maps with n edges and 4 faces on an orientable surface of genus 1.
420, 14065, 256116, 3392843, 36703824, 344468530, 2908358552, 22620890127, 164767964504, 1137369687454, 7506901051000, 47700234551918, 293370096957504, 1753945289216484, 10229201477344752, 58364244137596695, 326571194881454376, 1795631576981016038, 9718877491130813368, 51858415558095569962
Offset: 5
Keywords
Links
- Sean R. Carrell, Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], 2014.
Crossrefs
Programs
-
Mathematica
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0; Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]); a[n_] := Q[n, 4, 1]; Table[a[n], {n, 5, 24}] (* Jean-François Alcover, Oct 18 2018 *)
-
PARI
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x); A288071_ser(N) = { my(y = A000108_ser(N+1)); y*(y-1)^5*(307*y^4 + 2411*y^3 - 2094*y^2 - 708*y + 504)/(y-2)^14; }; Vec(A288071_ser(20))