cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288072 a(n) is the number of rooted maps with n edges and 5 faces on an orientable surface of genus 1.

Original entry on oeis.org

2310, 100156, 2278660, 36703824, 472592916, 5188948072, 50534154408, 448035881592, 3682811916980, 28442316247080, 208462422428152, 1461307573813824, 9857665477085832, 64309102366765200, 407372683115470800, 2514120288996270024, 15159074541052024308, 89512241718624419624
Offset: 6

Views

Author

Gheorghe Coserea, Jun 05 2017

Keywords

Crossrefs

Rooted maps of genus 1 with n edges and f faces for 1<=f<=10: A002802(with offset 2) f=1, A006295 f=2, A006296 f=3, A288071 f=4, this sequence, A287046 f=6, A287047 f=7, A287048 f=8, A288073 f=9, A288074 f=10.
Column 5 of A269921.
Cf. A000108.

Programs

  • Mathematica
    Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
    Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
    a[n_] := Q[n, 5, 1];
    Table[a[n], {n, 6, 23}] (* Jean-François Alcover, Oct 18 2018 *)
  • PARI
    A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
    A288072_ser(N) = {
      my(y = A000108_ser(N+1));
      -2*y*(y-1)^6*(2140*y^5 + 14751*y^4 - 15604*y^3 - 8820*y^2 + 10176*y - 1488)/(y-2)^17;
    };
    Vec(A288072_ser(18))