A288097 Square array read by antidiagonals downwards: A(n, 1) = smallest base-prime(n) Wieferich prime and A(n, k) = smallest base-A(n, k-1) Wieferich prime for k > 1.
1093, 2, 11, 1093, 71, 2, 2, 3, 1093, 5, 1093, 11, 2, 2, 71, 2, 71, 1093, 1093, 3, 2, 1093, 3, 2, 2, 11, 1093, 2, 2, 11, 1093, 1093, 71, 2, 1093, 3, 1093, 71, 2, 2, 3, 1093, 2, 11, 13, 2, 3, 1093, 1093, 11, 2, 1093, 71, 2, 2, 1093, 11, 2, 2, 71, 1093, 2, 3, 1093, 1093, 7
Offset: 1
Examples
Array starts 1093, 2, 1093, 2, 1093, 2, 1093, 2, 1093, 2 11, 71, 3, 11, 71, 3, 11, 71, 3, 11 2, 1093, 2, 1093, 2, 1093, 2, 1093, 2, 1093 5, 2, 1093, 2, 1093, 2, 1093, 2, 1093, 2 71, 3, 11, 71, 3, 11, 71, 3, 11, 71 2, 1093, 2, 1093, 2, 1093, 2, 1093, 2, 1093 2, 1093, 2, 1093, 2, 1093, 2, 1093, 2, 1093 3, 11, 71, 3, 11, 71, 3, 11, 71, 3 13, 2, 1093, 2, 1093, 2, 1093, 2, 1093, 2 2, 1093, 2, 1093, 2, 1093, 2, 1093, 2, 1093
Programs
-
Mathematica
f[n_] := Block[{p = 2}, While[! Divisible[n^(p - 1) - 1, p^2], p = NextPrime@ p]; p]; T[n_, k_] := T[n, k] = If[k == 1, f@ Prime@ n, f@ T[n, k - 1]]; Table[Function[n, T[n, k]][m - k + 1], {m, 12}, {k, m, 1, -1}] // Flatten (* Michael De Vlieger, Jun 06 2017 *)
-
PARI
a039951(n) = forprime(p=1, , if(Mod(n, p^2)^(p-1)==1, return(p))) table(rows, cols) = forprime(p=1, prime(rows), my(i=0, w=a039951(p)); while(i < cols, print1(w, ", "); w=a039951(w); i++); print("")) table(10, 10) \\ print initial 10 rows and 10 columns of table
Extensions
More terms from Michael De Vlieger, Jun 06 2017