cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288111 Number of Dyck paths of semilength n such that each level has exactly four peaks or no peaks.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 4, 7, 11, 22, 81, 235, 673, 2063, 5716, 13627, 33752, 95729, 298232, 946563, 2977953, 9147328, 27004159, 76880498, 217826819, 637089405, 1949908577, 6160707450, 19627448025, 61909478550, 191681762379, 583025396879, 1756696160636
Offset: 0

Views

Author

Alois P. Heinz, Jun 05 2017

Keywords

Examples

			. a(6) = 4:
.                                             /\/\/\/\
.  /\  /\/\/\    /\/\  /\/\    /\/\/\  /\    /        \
. /  \/      \  /    \/    \  /      \/  \  /          \  .
		

Crossrefs

Column k=4 of A288108.

Programs

  • Maple
    b:= proc(n, k, j) option remember; `if`(n=j, 1, add(
          b(n-j, k, i)*(binomial(j-1, i-1)+binomial(i, k)
           *binomial(j-1, i-1-k)), i=1..min(j+k, n-j)))
        end:
    a:= n-> `if`(n=0, 1, b(n, 4$2)):
    seq(a(n), n=0..40);
  • Mathematica
    b[n_, k_, j_] := b[n, k, j] = If[n == j, 1, Sum[b[n - j, k, i]*(Binomial[j - 1, i - 1] + Binomial[i, k]*Binomial[j - 1, i - 1 - k]), {i, 1, Min[j + k, n - j]}]];
    a[n_] := If[n == 0, 1, b[n, 4, 4]];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jun 02 2018, from Maple *)