A288112 Number of Dyck paths of semilength n such that each level has exactly five peaks or no peaks.
1, 0, 0, 0, 0, 1, 1, 5, 11, 19, 32, 60, 178, 612, 1910, 6505, 22097, 62717, 155341, 365413, 908850, 2587326, 8337462, 28613490, 99865122, 341887279, 1112148217, 3385839203, 9723179369, 27116765041, 76656520298, 228493968174, 728697760582, 2447359432110
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Wikipedia, Counting lattice paths
Crossrefs
Column k=5 of A288108.
Programs
-
Maple
b:= proc(n, k, j) option remember; `if`(n=j, 1, add( b(n-j, k, i)*(binomial(j-1, i-1)+binomial(i, k) *binomial(j-1, i-1-k)), i=1..min(j+k, n-j))) end: a:= n-> `if`(n=0, 1, b(n, 5$2)): seq(a(n), n=0..37);
-
Mathematica
b[n_, k_, j_] := b[n, k, j] = If[n == j, 1, Sum[b[n - j, k, i]*(Binomial[j - 1, i - 1] + Binomial[i, k]*Binomial[j - 1, i - 1 - k]), {i, 1, Min[j + k, n - j]}]]; a[n_] := If[n == 0, 1, b[n, 5, 5]]; Table[a[n], {n, 0, 37}] (* Jean-François Alcover, Jun 02 2018, from Maple *)