A288113 Number of Dyck paths of semilength n such that each level has exactly six peaks or no peaks.
1, 0, 0, 0, 0, 0, 1, 1, 6, 16, 31, 56, 102, 179, 426, 1490, 5164, 18715, 73281, 253183, 741420, 1915072, 4599352, 10845192, 26990806, 76446936, 251549461, 918616924, 3497341145, 13161267180, 47114251055, 157204766841, 487208649994, 1416324380706, 3944267803650
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Wikipedia, Counting lattice paths
Crossrefs
Column k=6 of A288108.
Programs
-
Maple
b:= proc(n, k, j) option remember; `if`(n=j, 1, add( b(n-j, k, i)*(binomial(j-1, i-1)+binomial(i, k) *binomial(j-1, i-1-k)), i=1..min(j+k, n-j))) end: a:= n-> `if`(n=0, 1, b(n, 6$2)): seq(a(n), n=0..40);
-
Mathematica
b[n_, k_, j_] := b[n, k, j] = If[n == j, 1, Sum[b[n - j, k, i]*(Binomial[j - 1, i - 1] + Binomial[i, k]*Binomial[j - 1, i - 1 - k]), {i, 1, Min[j + k, n - j]}]]; a[n_] := If[n == 0, 1, b[n, 6, 6]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jun 02 2018, from Maple *)