A288115 Number of Dyck paths of semilength n such that each level has exactly eight peaks or no peaks.
1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 8, 29, 71, 148, 302, 596, 1101, 1915, 3485, 8991, 32879, 131942, 595068, 2731434, 11077722, 38438377, 117144042, 324706536, 842734665, 2087025088, 4995608093, 11799404719, 28899101722, 79974175125, 268545121874, 1071998634063
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Wikipedia, Counting lattice paths
Crossrefs
Column k=8 of A288108.
Programs
-
Maple
b:= proc(n, k, j) option remember; `if`(n=j, 1, add( b(n-j, k, i)*(binomial(j-1, i-1)+binomial(i, k) *binomial(j-1, i-1-k)), i=1..min(j+k, n-j))) end: a:= n-> `if`(n=0, 1, b(n, 8$2)): seq(a(n), n=0..37);
-
Mathematica
b[n_, k_, j_] := b[n, k, j] = If[n == j, 1, Sum[b[n - j, k, i]*(Binomial[j - 1, i - 1] + Binomial[i, k]*Binomial[j - 1, i - 1 - k]), {i, 1, Min[j + k, n - j]}]]; a[n_] := If[n == 0, 1, b[n, 8, 8]]; Table[a[n], {n, 0, 37}] (* Jean-François Alcover, Jun 02 2018, from Maple *)