A288116 Number of Dyck paths of semilength n such that each level has exactly nine peaks or no peaks.
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 9, 37, 101, 227, 487, 1019, 2015, 3724, 6528, 11438, 24758, 81106, 330810, 1542486, 7723906, 35765450, 142808117, 494994177, 1533142713, 4370885515, 11737660709, 30111369545, 74286138919, 177289070957, 416431652499
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Wikipedia, Counting lattice paths
Crossrefs
Column k=9 of A288108.
Programs
-
Maple
b:= proc(n, k, j) option remember; `if`(n=j, 1, add( b(n-j, k, i)*(binomial(j-1, i-1)+binomial(i, k) *binomial(j-1, i-1-k)), i=1..min(j+k, n-j))) end: a:= n-> `if`(n=0, 1, b(n, 9$2)): seq(a(n), n=0..40);
-
Mathematica
b[n_, k_, j_] := b[n, k, j] = If[n == j, 1, Sum[b[n - j, k, i]*(Binomial[j - 1, i - 1] + Binomial[i, k]*Binomial[j - 1, i - 1 - k]), {i, 1, Min[j + k, n - j]}]]; a[n_] := If[n == 0, 1, b[n, 9, 9]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jun 02 2018, from Maple *)