A288140 Number of Dyck paths of semilength n such that the number of peaks is weakly decreasing from lower to higher levels.
1, 1, 1, 3, 4, 12, 28, 63, 177, 455, 1233, 3383, 9359, 26809, 77078, 223201, 653982, 1934508, 5783712, 17431660, 52879184, 161386859, 495432345, 1530191918, 4754079840, 14849407892, 46604383972, 146897291083, 464892421363, 1477052536749, 4711124635655
Offset: 0
Keywords
Examples
. a(5) = 12: . /\ /\ /\ . /\/\/\/\/\ /\/\/\/ \ /\/\/ \/\ /\/ \/\/\ . . /\ /\/\ /\/\ /\/\ . / \/\/\/\ /\/\/ \ /\/ \/\ / \/\/\ . . /\ /\ /\ /\ . /\/ \ / \/\ /\/ \ / \/\ . /\/ \ /\/ \ / \/\ / \/\ .
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
- Wikipedia, Counting lattice paths
Programs
-
Maple
b:= proc(n, k, j) option remember; `if`(n=j, 1, add(add( b(n-j, t, i)*binomial(i, t)*binomial(j-1, i-1-t), t=max(k, i-j)..min(n-j, i-1)), i=1..n-j)) end: a:= n-> `if`(n=0, 1, add(b(n, k$2), k=1..n)): seq(a(n), n=0..31);
-
Mathematica
b[n_, k_, j_] := b[n, k, j] = If[n == j, 1, Sum[Sum[b[n - j, t, i]* Binomial[i, t]*Binomial[j - 1, i - 1 - t], {t, Max[k, i - j], Min[n - j, i - 1]}], {i, 1, n - j}]]; a[n_] := If[n == 0, 1, Sum[b[n, k, k], {k, 1, n}]]; Table[a[n], {n, 0, 31}] (* Jean-François Alcover, May 29 2018, from Maple *)