A288141 Number of Dyck paths of semilength n such that the number of peaks is strongly decreasing from lower to higher levels.
1, 1, 1, 1, 4, 5, 10, 22, 46, 148, 324, 722, 1843, 4634, 12537, 34248, 95711, 266761, 724689, 1983267, 5553902, 15900083, 46201546, 135511171, 400668869, 1189723253, 3535186203, 10516298421, 31405658622, 94378367065, 285623516777, 870481565252, 2671088133010
Offset: 0
Keywords
Examples
a(5) = 5: /\ /\ /\ /\ /\/\/\/\/\ /\/\/\/ \ /\/\/ \/\ /\/ \/\/\ / \/\/\/\
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
- Wikipedia, Counting lattice paths
Programs
-
Maple
b:= proc(n, k, j) option remember; `if`(n=j, 1, add(add( b(n-j, t, i)*binomial(i, t)*binomial(j-1, i-1-t), t=max(k+1, i-j)..min(n-j, i-1)), i=1..n-j)) end: a:= n-> `if`(n=0, 1, add(b(n, k$2), k=1..n)): seq(a(n), n=0..34);
-
Mathematica
b[n_, k_, j_] := b[n, k, j] = If[n == j, 1, Sum[Sum[b[n - j, t, i]* Binomial[i, t]*Binomial[j - 1, i - 1 - t], {t, Max[k + 1, i - j], Min[n - j, i - 1]}], {i, 1, n - j}]]; a[n_] := If[n == 0, 1, Sum[b[n, k, k], {k, 1, n}]]; Table[a[n], {n, 0, 34}] (* Jean-François Alcover, May 29 2018, from Maple *)