cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288141 Number of Dyck paths of semilength n such that the number of peaks is strongly decreasing from lower to higher levels.

Original entry on oeis.org

1, 1, 1, 1, 4, 5, 10, 22, 46, 148, 324, 722, 1843, 4634, 12537, 34248, 95711, 266761, 724689, 1983267, 5553902, 15900083, 46201546, 135511171, 400668869, 1189723253, 3535186203, 10516298421, 31405658622, 94378367065, 285623516777, 870481565252, 2671088133010
Offset: 0

Views

Author

Alois P. Heinz, Jun 05 2017

Keywords

Examples

			a(5) = 5:
                     /\        /\        /\        /\
  /\/\/\/\/\  /\/\/\/  \  /\/\/  \/\  /\/  \/\/\  /  \/\/\/\
		

Crossrefs

Programs

  • Maple
    b:= proc(n, k, j) option remember; `if`(n=j, 1, add(add(
           b(n-j, t, i)*binomial(i, t)*binomial(j-1, i-1-t),
           t=max(k+1, i-j)..min(n-j, i-1)), i=1..n-j))
        end:
    a:= n-> `if`(n=0, 1, add(b(n, k$2), k=1..n)):
    seq(a(n), n=0..34);
  • Mathematica
    b[n_, k_, j_] := b[n, k, j] = If[n == j, 1, Sum[Sum[b[n - j, t, i]* Binomial[i, t]*Binomial[j - 1, i - 1 - t], {t, Max[k + 1, i - j], Min[n - j, i - 1]}], {i, 1, n - j}]];
    a[n_] := If[n == 0, 1, Sum[b[n, k, k], {k, 1, n}]];
    Table[a[n], {n, 0, 34}] (* Jean-François Alcover, May 29 2018, from Maple *)