cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288143 Expansion of x * phi(x) * phi(x^3)^2 * f(x, x^5)^3 in powers of x where phi() is a Ramanujan theta function and f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 5, 9, 11, 24, 45, 50, 53, 81, 120, 120, 99, 170, 250, 216, 203, 288, 405, 362, 264, 450, 600, 528, 477, 601, 850, 729, 550, 840, 1080, 962, 821, 1080, 1440, 1200, 891, 1370, 1810, 1530, 1272, 1680, 2250, 1850, 1320, 1944, 2640, 2208, 1827, 2451, 3005, 2592
Offset: 1

Views

Author

Michael Somos, Jul 01 2017

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = q + 5*q^2 + 9*q^3 + 11*q^4 + 24*q^5 + 45*q^6 + 50*q^7 + 53*q^8 + 81*q^9 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(12), 3), 52); A[2] + 5*A[3] + 9*A[4] + 11*A[5] + 24*A[6] + 45*A[7] + 50*A[8] + 53*A[9] + 81*A[10] + 120*A[11] + 120*A[12] + 99*A[13];
  • Mathematica
    a[ n_] := If[ n < 1, 0, (-1)^n DivisorSum[ n, (-1)^# #^2 JacobiSymbol[ -3, n/#] &]];
    a[ n_] := SeriesCoefficient[ x EllipticTheta[ 3, 0, x] EllipticTheta[ 3, 0, x^3]^2 (QPochhammer[ -x, x^6] QPochhammer[ -x^5, x^6] QPochhammer[ x^6])^3, {x, 0, n}];
    a[ n_] := If[ n < 2, Boole[n == 1], Times @@ (Which[# == 3, 9^#2, # == 2, (4^(#2 + 1) + 9 (-1)^(#2 + 1))/5, Mod[#, 6] == 1, ((#^2)^(#2 + 1) - 1)/(#^2 - 1), True, ((#^2)^(#2 + 1) - (-1)^(#2 + 1))/(#^2 + 1)] & @@@ FactorInteger@n)];
  • PARI
    {a(n) = if( n<1, 0, (-1)^n * sumdiv( n, d, (-1)^d * d^2 * kronecker( -3, n/d)))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^11 * eta(x^6 + A)^7 / (eta(x + A)^5 * eta(x^3 + A) * eta(x^4 + A)^5 * eta(x^12 + A)), n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, 9^e, p==2, (4^(e+1) + 9*(-1)^(e+1)) / 5, p%6==1, ((p^2)^(e+1) - 1) / (p^2 - 1), ((p^2)^(e+1) - (-1)^(e+1)) / (p^2 + 1))))};
    

Formula

Expansion of (a(q^2) - a(-q)) * (2*a(q) + a(-q))^2 / 54 in powers of q where a() is a cubic AGM theta function.
Expansion of -c(-q) * (2*c(q) + c(-q))^2 / 27 in powers of q where c() is a cubic AGM theta function.
Expansion of eta(q^2)^11 * eta(q^6)^7 / (eta(q)^5 * eta(q^3) * eta(q^4)^5 * eta(q^12)) in powers of q.
a(n) is multiplicative with a(3^e) = 9^e, a(2^e) = (4^(e+1) + 9*(-1)^(e+1)) / 5 if e>0, a(p^e) = ((p^2)^(e+1) - 1) / (p^2 - 1) if p == 1 (mod 6), a(p^e) = ((p^2)^(e+1) - (-1)^(e+1)) / (p^2 + 1) if p == 5 (mod 6).
Euler transform of period 12 sequence [5, -6, 6, -1, 5, -12, 5, -1, 6, -6, 5, -6, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 192^(1/2) (t/i)^3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A113261.
G.f.: Sum_{k>0} k^2 * x^k / (1 + x^k + x^(2*k)) * if(mod(k,4)=2, 3/2, 1).
a(n) = -(-1)^n * A214262(n).
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = Product_{p prime == 1 (mod 6)} (p^3/(p^3-1)) * Product_{p prime == 5 (mod 6)} (p^3/(p^3+1)) = 1/(A334478 * A334479) = 0.99452678821883983883... . - Amiram Eldar, Feb 20 2024