A288143 Expansion of x * phi(x) * phi(x^3)^2 * f(x, x^5)^3 in powers of x where phi() is a Ramanujan theta function and f(, ) is Ramanujan's general theta function.
1, 5, 9, 11, 24, 45, 50, 53, 81, 120, 120, 99, 170, 250, 216, 203, 288, 405, 362, 264, 450, 600, 528, 477, 601, 850, 729, 550, 840, 1080, 962, 821, 1080, 1440, 1200, 891, 1370, 1810, 1530, 1272, 1680, 2250, 1850, 1320, 1944, 2640, 2208, 1827, 2451, 3005, 2592
Offset: 1
Examples
G.f. = q + 5*q^2 + 9*q^3 + 11*q^4 + 24*q^5 + 45*q^6 + 50*q^7 + 53*q^8 + 81*q^9 + ...
Links
- Indranil Ghosh, Table of n, a(n) for n = 1..2000
- Michael Somos, Introduction to Ramanujan theta functions, 2019.
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
Crossrefs
Programs
-
Magma
A := Basis( ModularForms( Gamma1(12), 3), 52); A[2] + 5*A[3] + 9*A[4] + 11*A[5] + 24*A[6] + 45*A[7] + 50*A[8] + 53*A[9] + 81*A[10] + 120*A[11] + 120*A[12] + 99*A[13];
-
Mathematica
a[ n_] := If[ n < 1, 0, (-1)^n DivisorSum[ n, (-1)^# #^2 JacobiSymbol[ -3, n/#] &]]; a[ n_] := SeriesCoefficient[ x EllipticTheta[ 3, 0, x] EllipticTheta[ 3, 0, x^3]^2 (QPochhammer[ -x, x^6] QPochhammer[ -x^5, x^6] QPochhammer[ x^6])^3, {x, 0, n}]; a[ n_] := If[ n < 2, Boole[n == 1], Times @@ (Which[# == 3, 9^#2, # == 2, (4^(#2 + 1) + 9 (-1)^(#2 + 1))/5, Mod[#, 6] == 1, ((#^2)^(#2 + 1) - 1)/(#^2 - 1), True, ((#^2)^(#2 + 1) - (-1)^(#2 + 1))/(#^2 + 1)] & @@@ FactorInteger@n)];
-
PARI
{a(n) = if( n<1, 0, (-1)^n * sumdiv( n, d, (-1)^d * d^2 * kronecker( -3, n/d)))};
-
PARI
{a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^11 * eta(x^6 + A)^7 / (eta(x + A)^5 * eta(x^3 + A) * eta(x^4 + A)^5 * eta(x^12 + A)), n))};
-
PARI
{a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, 9^e, p==2, (4^(e+1) + 9*(-1)^(e+1)) / 5, p%6==1, ((p^2)^(e+1) - 1) / (p^2 - 1), ((p^2)^(e+1) - (-1)^(e+1)) / (p^2 + 1))))};
Formula
Expansion of (a(q^2) - a(-q)) * (2*a(q) + a(-q))^2 / 54 in powers of q where a() is a cubic AGM theta function.
Expansion of -c(-q) * (2*c(q) + c(-q))^2 / 27 in powers of q where c() is a cubic AGM theta function.
Expansion of eta(q^2)^11 * eta(q^6)^7 / (eta(q)^5 * eta(q^3) * eta(q^4)^5 * eta(q^12)) in powers of q.
a(n) is multiplicative with a(3^e) = 9^e, a(2^e) = (4^(e+1) + 9*(-1)^(e+1)) / 5 if e>0, a(p^e) = ((p^2)^(e+1) - 1) / (p^2 - 1) if p == 1 (mod 6), a(p^e) = ((p^2)^(e+1) - (-1)^(e+1)) / (p^2 + 1) if p == 5 (mod 6).
Euler transform of period 12 sequence [5, -6, 6, -1, 5, -12, 5, -1, 6, -6, 5, -6, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 192^(1/2) (t/i)^3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A113261.
G.f.: Sum_{k>0} k^2 * x^k / (1 + x^k + x^(2*k)) * if(mod(k,4)=2, 3/2, 1).
a(n) = -(-1)^n * A214262(n).
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = Product_{p prime == 1 (mod 6)} (p^3/(p^3-1)) * Product_{p prime == 5 (mod 6)} (p^3/(p^3+1)) = 1/(A334478 * A334479) = 0.99452678821883983883... . - Amiram Eldar, Feb 20 2024
Comments