A288147 Number of Dyck paths of semilength n such that the number of peaks is strongly increasing from lower to higher levels and no positive level is peakless.
1, 1, 1, 1, 3, 6, 12, 31, 68, 186, 506, 1299, 3481, 9712, 27692, 79587, 232743, 694896, 2086245, 6248158, 18771510, 57007483, 175149700, 542313513, 1688360997, 5288335561, 16679137617, 52933231538, 168768966207, 539981776609, 1733555552587, 5587076558809
Offset: 0
Keywords
Examples
a(5) = 6: /\ /\ /\ /\ /\/\/\/\/\ /\/ \/ \ / \/\/ \ . /\ /\ /\/\/\ /\/\/\ / \/ \/\ /\/ \ / \/\
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
- Wikipedia, Counting lattice paths
Programs
-
Maple
b:= proc(n, k, j) option remember; `if`(n=j, 1, add(add( b(n-j, t, i)*binomial(i, t)*binomial(j-1, i-1-t), t=max(1, i-j)..min(k-1, n-j, i-1)), i=1..n-j)) end: a:= n-> `if`(n=0, 1, add(b(n, k$2), k=1..n)): seq(a(n), n=0..34);
-
Mathematica
b[n_, k_, j_] := b[n, k, j] = If[n == j, 1, Sum[Sum[b[n - j, t, i]* Binomial[i, t]*Binomial[j - 1, i - 1 - t], {t, Max[1, i - j], Min[k - 1, n - j, i - 1]}], {i, 1, n - j}]]; a[n_] := If[n == 0, 1, Sum[b[n, k, k], {k, 1, n}]]; Table[a[n], {n, 0, 34}] (* Jean-François Alcover, May 29 2018, from Maple *)