A288199 Irregular triangle read by rows: mean version of Girard-Waring formula (cf. A210258), for m = 4 data values.
1, 4, -3, 16, -18, 3, 64, -96, 16, 18, -1, 256, -480, 80, 180, -30, -5, 1024, -2304, 384, 1296, -288, -108, -24, 9, 12, 4096, -10752, 1792, 8064, -2016, -1512, 112, 252, -112, 84, -7
Offset: 1
Examples
Triangle begins: 1; 4, -3; 16, -18, 3; 64, -96, 16, 18, -1; 256, -480, 80, 180, -5, -30; ... The first few rows describe: Row 1: SM_1 = 1 eM_1; Row 2: SM_2 = 4*(eM_1)^2 - 3*eM_2; Row 3: SM_3 = 16*(eM_1)^3 - 18*eM_1*eM_2 + 3*eM_3; Row 4: SM_4 = 64*(eM_1)^4 - 96*(eM_1)^2*eM_2 + 16*eM_1*eM_3 + 18*(eM_2)^2 - 1*eM_4; Row 5: SM_5 = 256*(eM_1)^5 - 480*(eM_1)^3*eM_2 + 80*(eM_1)^2*eM_2 + 180*eM_1*(eM_2)^2 - 30*eM_2*eM_3 - 5*eM_1*eM_4.
Links
- Gregory Gerard Wojnar, Java program
- G. G. Wojnar, D. Sz. Wojnar, and L. Q. Brin, Universal Peculiar Linear Mean Relationships in All Polynomials, Table GW.n=4, p.23, arXiv:1706.08381 [math.GM], 2017.
Comments