cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288271 a(n) is the number of rooted maps with n edges and one face on an orientable surface of genus 4.

Original entry on oeis.org

225225, 12317877, 351683046, 7034538511, 111159740692, 1480593013900, 17302190625720, 182231849209410, 1763184571730010, 15894791312284170, 134951136993773100, 1088243826731751690, 8391311316938069520, 62210659883935683120, 445441857820701181440, 3092035882104030618900
Offset: 8

Views

Author

Gheorghe Coserea, Jun 08 2017

Keywords

Crossrefs

Rooted maps of genus 4 with n edges and f faces for 1<=f<=10: this sequence, A288272 f=2, A288273 f=3, A288274 f=4, A288275 f=5, A288276 f=6, A288277 f=7, A288278 f=8, A288279 f=9, A288280 f=10.
Column 1 of A269924.
Cf. A000108.

Programs

  • Mathematica
    Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
    Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1)(2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
    a[n_] := Q[n, 1, 4];
    Table[a[n], {n, 8, 23}] (* Jean-François Alcover, Oct 16 2018 *)
  • PARI
    A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
    A288271_ser(N) = {
      my(y = A000108_ser(N+1));
      -143*y*(y-1)^8*(1575*y^6 + 13689*y^5 + 4689*y^4 - 34417*y^3 + 11361*y^2 + 7017*y - 2339)/(y-2)^23;
    };
    Vec(A288271_ser(16))

Formula

G.f.: -143*y*(y-1)^8*(1575*y^6 + 13689*y^5 + 4689*y^4 - 34417*y^3 + 11361*y^2 + 7017*y - 2339)/(y-2)^23, where y=A000108(x).