A269925
Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 5.
Original entry on oeis.org
59520825, 4304016990, 4304016990, 158959754226, 354949166565, 158959754226, 4034735959800, 14805457339920, 14805457339920, 4034735959800, 79553497760100, 420797306522502, 691650582088536, 420797306522502, 79553497760100, 1302772718028600, 9220982517965400, 21853758736216200, 21853758736216200, 9220982517965400, 1302772718028600
Offset: 10
Triangle starts:
n\f [1] [2] [3] [4]
[10] 59520825;
[11] 4304016990, 4304016990;
[12] 15895975422, 354949166565, 158959754226;
[13] 4034735959800, 14805457339920, 14805457339920, 4034735959800;
[14] ...
Cf.
A035309,
A269921,
A269922,
A269923,
A269924,
A270406,
A270407,
A270408,
A270409,
A270410,
A270411,
A270412.
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n<0 || f<0 || g<0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1)(2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
Table[Q[n, f, 5], {n, 10, 15}, {f, 1, n-9}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)
-
N = 15; G = 5; gmax(n) = min(n\2, G);
Q = matrix(N + 1, N + 1);
Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
Qset(n, g, v) = { Q[n+1, g+1] = v };
Quadric({x=1}) = {
Qset(0, 0, x);
for (n = 1, length(Q)-1, for (g = 0, gmax(n),
my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
(2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
};
Quadric('x);
concat(apply(p->Vecrev(p/'x), vector(N+1 - 2*G, n, Qget(n-1 + 2*G, G))))
A288288
a(n) is the number of rooted maps with n edges and 8 faces on an orientable surface of genus 5.
Original entry on oeis.org
233454817237201560, 35801820369640556595, 2677324515710001081372, 131989618396827099239715, 4869474711666664850333856, 144282707675416905279319800, 3591928999997575304490876960, 77515666515764938993111323048, 1483610943246601143976044602400, 25624962301264473700614835484334, 404881818003827869935873694190904, 5916336815178383154031082792690874
Offset: 17
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2n - 1)/3 Q[n - 1, f, g] + (2n - 1)/3 Q[n - 1, f - 1, g] + (2n - 3) (2n - 2) (2n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2k - 1) (2l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 8, 5];
Table[a[n], {n, 17, 28}] (* Jean-François Alcover, Oct 17 2018 *)
A288289
a(n) is the number of rooted maps with n edges and 9 faces on an orientable surface of genus 5.
Original entry on oeis.org
2682208751185413450, 447016944351510642564, 36188783145801243558900, 1924446945220467632598816, 76330117260895762678976496, 2424036981927621898592714592, 64495258714680679471831890624, 1483610943246601143976044602400, 30193909664655985735143003641892, 553279524558089394499396612588296, 9254922250232295721515866705613000, 142890407229849701818261896174135456
Offset: 18
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2n - 1)/3 Q[n - 1, f, g] + (2n - 1)/3 Q[n - 1, f - 1, g] + (2n - 3) (2n - 2) (2n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2k - 1) (2l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 9, 5];
Table[a[n], {n, 18, 29}] (* Jean-François Alcover, Oct 17 2018 *)
A288281
a(n) is the number of rooted maps with n edges and one face on an orientable surface of genus 5.
Original entry on oeis.org
59520825, 4304016990, 158959754226, 4034735959800, 79553497760100, 1302772718028600, 18475997006212200, 233454817237201560, 2682208751185413450, 28449551653853229900, 281858111998039476900, 2632472852850938916000, 23350616705746908461520, 197910970615681824664800, 1610886016462484019585600
Offset: 10
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 1, 5];
Table[a[n], {n, 10, 24}] (* Jean-François Alcover, Oct 17 2018 *)
A288282
a(n) is the number of rooted maps with n edges and 2 faces on an orientable surface of genus 5.
Original entry on oeis.org
4304016990, 354949166565, 14805457339920, 420797306522502, 9220982517965400, 166713517116449940, 2595050050431235488, 35801820369640556595, 447016944351510642564, 5131008990500486096250, 54801783386722932356160, 549865627271249187555384, 5223273162178751507973600
Offset: 11
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 2, 5];
Table[a[n], {n, 11, 23}] (* Jean-François Alcover, Oct 17 2018 *)
A288283
a(n) is the number of rooted maps with n edges and 3 faces on an orientable surface of genus 5.
Original entry on oeis.org
158959754226, 14805457339920, 691650582088536, 21853758736216200, 528887751025584600, 10499075716384241952, 178505550201444784920, 2677324515710001081372, 36188783145801243558900, 447964809766718459342400, 5141788096308757330278816, 55267879542927003057175200, 560775739552815581754138816
Offset: 12
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 3, 5];
Table[a[n], {n, 12, 24}] (* Jean-François Alcover, Oct 17 2018 *)
A288284
a(n) is the number of rooted maps with n edges and 4 faces on an orientable surface of genus 5.
Original entry on oeis.org
4034735959800, 420797306522502, 21853758736216200, 762684674663536626, 20269771718252599536, 439591872915483185214, 8127109896970086044280, 131989618396827099239715, 1924446945220467632598816, 25606868770179512447281320, 314937862113457568812798944, 3616708980976267213715063568, 39101467996466899068672052800, 400687469703530771051452630260, 3913896712273232414650041609360
Offset: 13
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 4, 5];
Table[a[n], {n, 13, 27}] (* Jean-François Alcover, Oct 17 2018 *)
A288285
a(n) is the number of rooted maps with n edges and 5 faces on an orientable surface of genus 5.
Original entry on oeis.org
79553497760100, 9220982517965400, 528887751025584600, 20269771718252599536, 588564117958709029644, 13881153040572190501512, 277921666244135490925320, 4869474711666664850333856, 76330117260895762678976496, 1088463806617771584122226336, 14304840156674599302991391808, 175067544404400195382759080000
Offset: 14
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 5, 5];
Table[a[n], {n, 14, 25}] (* Jean-François Alcover, Oct 17 2018 *)
A288286
a(n) is the number of rooted maps with n edges and 6 faces on an orientable surface of genus 5.
Original entry on oeis.org
1302772718028600, 166713517116449940, 10499075716384241952, 439591872915483185214, 13881153040572190501512, 354556747218700475500140, 7658941714130456546009472, 144282707675416905279319800, 2424036981927621898592714592, 36940703720927769833985462240, 517437278627390310406722691200, 6732676056022023909877001111172
Offset: 15
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 6, 5];
Table[a[n], {n, 15, 26}] (* Jean-François Alcover, Oct 17 2018 *)
A288287
a(n) is the number of rooted maps with n edges and 7 faces on an orientable surface of genus 5.
Original entry on oeis.org
18475997006212200, 2595050050431235488, 178505550201444784920, 8127109896970086044280, 277921666244135490925320, 7658941714130456546009472, 177889367903895880526289600, 3591928999997575304490876960, 64495258714680679471831890624, 1047632171592441142843472246400, 15602830991918991492377865030768, 215367527001361085125596104693328
Offset: 16
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 7, 5];
Table[a[n], {n, 16, 27}] (* Jean-François Alcover, Oct 17 2018 *)
Showing 1-10 of 10 results.
Comments