A288325 Number of Dyck paths of semilength n such that each positive level has exactly nine peaks.
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 440, 6160, 40040, 140140, 280280, 320320, 194480, 48620, 0, 100, 9350, 382800, 9083800, 142638320, 1602400800, 13556342800, 89523519800, 473679520600, 2047398407340, 7334909697400, 22016582387800
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Wikipedia, Counting lattice paths
Programs
-
Maple
b:= proc(n, k, j) option remember; `if`(n=j, 1, add(b(n-j, k, i)*(binomial(i, k) *binomial(j-1, i-1-k)), i=1..min(j+k, n-j))) end: a:= n-> `if`(n=0, 1, b(n, 9$2)): seq(a(n), n=0..42);
-
Mathematica
b[n_, k_, j_] := b[n, k, j] = If[n == j, 1, Sum[b[n - j, k, i]*(Binomial[i, k]*Binomial[j - 1, i - 1 - k]), {i, 1, Min[j + k, n - j]}]]; a[n_] := If[n == 0, 1, b[n, 9, 9]]; Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Jun 02 2018, from Maple *)