A288326 Number of Dyck paths of semilength n such that each positive level has exactly ten peaks.
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 594, 10296, 84084, 378378, 1009008, 1633632, 1575288, 831402, 184756, 0, 121, 13794, 686070, 19744296, 375698466, 5114697588, 52484019588, 421146343332, 2715042399498, 14352204442576
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Wikipedia, Counting lattice paths
Programs
-
Maple
b:= proc(n, k, j) option remember; `if`(n=j, 1, add(b(n-j, k, i)*(binomial(i, k) *binomial(j-1, i-1-k)), i=1..min(j+k, n-j))) end: a:= n-> `if`(n=0, 1, b(n, 10$2)): seq(a(n), n=0..45);
-
Mathematica
b[n_, k_, j_] := b[n, k, j] = If[n == j, 1, Sum[b[n - j, k, i]*(Binomial[i, k]*Binomial[j - 1, i - 1 - k]), {i, 1, Min[j + k, n - j]}]]; a[n_] := If[n == 0, 1, b[n, 10, 10]]; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Jun 02 2018, from Maple *)