A288529 a(n) is the minimum number of rows from the table described in A286000 that are required to represent the partitions of n into consecutive parts.
1, 2, 4, 4, 6, 8, 8, 8, 11, 13, 12, 14, 14, 17, 19, 16, 18, 21, 20, 24, 26, 25, 24, 26, 29, 29, 32, 34, 30, 34, 32, 32, 38, 37, 41, 43, 38, 41, 44, 44, 42, 48, 44, 51, 53, 49, 48, 50, 55, 54, 56, 59, 54, 62, 64, 62, 62, 61, 60, 67, 62, 65, 71, 64, 74, 76, 68, 75, 74, 76, 72, 80, 74, 77, 84, 83, 87, 89, 80, 84, 89, 85
Offset: 1
Keywords
Examples
Figures A..D show the evolution of the table of partitions into consecutive parts described in A286000, for n = 8..11: . --------------------------------------------------------------------- Figure: A B C D . --------------------------------------------------------------------- . n: 8 9 10 11 Row --------------------------------------------------------------------- 1 | 1; | 1; | 1; | 1; | 1 | 2; | 2; | 2; | 2; | 3 | 3, 2; | 3, 2; | 3, 2; | 3, 2; | 4 | 4, 1; | 4, 1; | 4, 1; | 4, 1; | 5 | 5, 3; | 5, 3; | 5, 3; | 5, 3; | 6 | 6, 2, 3;| 6, 2, 3; | 6, 2, 3; | 6, 2, 3; | 7 | 7, 4, 2;| 7, 4, 2; | 7, 4, 2; | 7, 4, 2; | 8 | [8], 3, 1;| 8, 3, 1; | 8, 3, 1; | 8, 3, 1; | 9 | | [9],[5],[4]; | 9, 5, 4; | 9, 5, 4; | 10 | | 10, [4],[3], 4;| [10], 4, 3, [4];| 10, 4, 3; 4;| 11 | | 11, 6, [2], 3;| 11, 6, 2; [3];| [11],[6], 2, 3;| 12 | | | 12, 5, 5, [2];| 12, [5], 5, 2;| 13 | | | 13, 7, 4, [1];| | . --------------------------------------------------------------------- . a(n): 8 11 13 12 . --------------------------------------------------------------------- For n = 8 we need a table with at least 8 rows, so a(8) = 8. For n = 9 we need a table with at least 11 rows, so a(9) = 11. For n = 10 we need a table with at least 13 rows, so a(10) = 13. For n = 11 we need a table with at least 12 rows, so a(11) = 12.
Formula
a(n) = A109814(n) + n - 1.
Comments