A288542 Number of Dyck paths of semilength n such that the minimal number of peaks over all positive levels equals three.
1, 0, 0, 0, 4, 29, 90, 188, 345, 825, 3089, 13450, 54526, 198846, 668430, 2155731, 6963768, 23265733, 81163559, 292726843, 1073684818, 3953422052, 14517741411, 53096290021, 193719344526, 706944953011, 2586796240687, 9505841335788, 35102295346482
Offset: 3
Keywords
Examples
: a(7) = 4: : : /\/\/\ /\/\/\ /\/\/\ /\/\/\ : /\/\/\/ \ /\/\/ \/\ /\/ \/\/\ / \/\/\/\ .
Links
- Alois P. Heinz, Table of n, a(n) for n = 3..300
- Wikipedia, Counting lattice paths