cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288572 a(n) = smallest positive integer k such that (n^3)^k == 1 mod (n+1)^3.

Original entry on oeis.org

1, 6, 16, 50, 6, 98, 64, 54, 50, 242, 48, 338, 98, 150, 256, 578, 54, 722, 400, 294, 242, 1058, 192, 1250, 338, 486, 784, 1682, 150, 1922, 1024, 726, 578, 2450, 432, 2738, 722, 1014, 1600, 3362, 294, 3698, 1936, 1350, 1058, 4418, 768, 4802, 1250, 1734, 2704, 5618, 486, 6050, 3136, 2166, 1682, 6962
Offset: 1

Views

Author

N. J. A. Sloane, Jun 28 2017

Keywords

Comments

From Robert Israel, Jun 28 2017: (Start)
Multiplicative order of n^3 mod (n+1)^3.
a(n) divides A053191(n+1).
a(n) is even for n >= 2.
If n == 3 (mod 4) then a(n) == 0 (mod 16), otherwise it appears that a(n) == 2 or 6 (mod 16).
If n == 0 or 4 (mod 6), then a(n) = 2*n^2.
(End)

Examples

			5^3 = 125, 6^3 = 216, 125^6 = 14551915228366851806640625 == 1 mod 216, so a(5) = 6.
(6^3)^98 == 1 mod 7^3, so a(6) = 98.
		

Crossrefs

Cf. A053191.

Programs

  • Maple
    seq(numtheory:-order(n^3, (n+1)^3), n=1..300); # Robert Israel, Jun 28 2017
  • PARI
    a(n) = my(k=1); while(Mod(n^3, (n+1)^3)^k!=1, k++); k \\ Felix Fröhlich, Jun 28 2017

Formula

Empirical: a(n+36) = 3*a(n+24) - 3*a(n+12) + a(n) for n >= 2. - Robert Israel, Jun 28 2017
Empirical g.f.: x*(x^36 + 2*x^35 + 2*x^33 + 2*x^32 + 6*x^31 + 16*x^30 + 50*x^29 + 6*x^28 + 98*x^27 + 64*x^26 + 54*x^25 + 47*x^24 + 236*x^23 + 48*x^22 + 332*x^21 + 92*x^20 + 132*x^19 + 208*x^18 + 428*x^17 + 36*x^16 + 428*x^15 + 208*x^14 + 132*x^13 + 95*x^12 + 338*x^11 + 48*x^10 + 242*x^9 + 50*x^8 + 54*x^7 + 64*x^6 + 98*x^5 + 6*x^4 + 50*x^3 + 16*x^2 + 6*x + 1)/(-x^36 + 3*x^24 - 3*x^12 + 1). - Colin Barker, Jun 30 2017

Extensions

Corrected and more terms from Robert Israel, Jun 28 2017