A288574 Total number of distinct primes in all representations of 2*n+1 as a sum of 3 odd primes.
0, 0, 0, 0, 1, 2, 4, 4, 6, 7, 9, 10, 12, 15, 17, 16, 19, 19, 23, 25, 26, 26, 28, 33, 32, 35, 43, 39, 41, 45, 45, 48, 54, 55, 52, 60, 59, 56, 75, 67, 67, 81, 74, 76, 92, 83, 85, 100, 96, 81, 106, 103, 91, 121, 108, 98, 131, 120, 116, 143, 133, 129, 151, 144, 124, 163
Offset: 0
Keywords
Links
- Indranil Ghosh (first 200 terms), Hugo Pfoertner, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Maple
A288574 := proc(n) local a, i, j, k, p, q, r,pqr ; a := 0 ; for i from 2 do p := ithprime(i) ; for j from i do q := ithprime(j) ; for k from j do r := ithprime(k) ; if p+q+r = 2*n+1 then pqr := {p,q,r} ; a := a+nops(pqr) ; elif p+q+r > 2*n+1 then break; end if; end do: if p+2*q > 2*n+1 then break; end if; end do: if 3*p > 2*n+1 then break; end if; end do: return a; end proc: seq(A288574(n),n=0..80) ; # R. J. Mathar, Jun 29 2017
-
Mathematica
Table[x = 2 n + 1; max = PrimePi[x]; Total[Length /@ Tally /@ DeleteDuplicates[Sort /@ Select[Tuples[Range[2, max], 3], Prime[#[[1]]] + Prime[#[[2]]] + Prime[#[[3]]] == x &]]], {n, 0, 100}] (* Robert Price, Apr 22 2025 *)
-
PARI
a(n)={my(p,q,r,cnt);n=2*n+1; forprime(p=3,n\3,forprime(q=p,(n-p)\2, if(isprime(r=n-p-q), cnt+=if(p===q&&p==r,1,if(p==q||q==r,2,3)))));cnt} \\ Franklin T. Adams-Watters, Jun 28 2017
-
Python
from sympy import primerange, isprime def a(n): n=2*n + 1 c=0 for p in primerange(3, n//3 + 1): for q in primerange(p, (n - p)//2 + 1): r=n - p - q if isprime(r): c+=1 if p==q and p==r else 2 if p==q or q==r else 3 return c print([a(n) for n in range(66)]) # Indranil Ghosh, Jun 29 2017
Comments