A288627 Triangle read by rows: T(n,k) = number of step cyclic shifted sequence structures of length n using exactly k different symbols.
1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 2, 3, 1, 1, 1, 7, 14, 11, 3, 1, 1, 4, 11, 13, 6, 1, 1, 1, 13, 52, 83, 52, 18, 3, 1, 1, 10, 72, 162, 148, 59, 13, 2, 1, 1, 25, 274, 930, 1140, 630, 171, 28, 3, 1, 1, 14, 281, 1369, 2306, 1681, 612, 118, 14, 1, 1
Offset: 1
Examples
Triangle begins 1; 1, 1; 1, 1, 1; 1, 3, 2, 1; 1, 2, 3, 1, 1; 1, 7, 14, 11, 3, 1; 1, 4, 11, 13, 6, 1, 1; 1, 13, 52, 83, 52, 18, 3, 1; 1, 10, 72, 162, 148, 59, 13, 2, 1; 1, 25, 274, 930, 1140, 630, 171, 28, 3, 1; ...
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
Crossrefs
Programs
-
PARI
\\ see A056391 for Polya enumeration functions T(n,k) = NonequivalentStructsExactly(CyclicStepShiftPerms(n), k); \\ Andrew Howroyd, Oct 14 2017
Comments