A288679 Number of Dyck paths of semilength n such that no positive level has fewer than three peaks.
1, 0, 0, 1, 1, 1, 1, 5, 30, 96, 245, 592, 1543, 4884, 17660, 64495, 226442, 766937, 2558655, 8590293, 29408344, 102893203, 366035420, 1314955687, 4747101946, 17184305311, 62359953380, 226978626707, 829122987011, 3040369502702, 11191473790567, 41342469523031
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..300
- Wikipedia, Counting lattice paths
Programs
-
Mathematica
b[n_, k_, j_]:=b[n, k, j]=If[j==n, 1, Sum[Sum[Binomial[i, m] Binomial[j - 1, i - 1 - m], {m, Max[k, i - j], i - 1}] b[n - j, k, i], {i, n - j}]]; a[n_]:=If[n==0, 1, Sum[b[n, 3, j], {j, 3, n}]];Table[a[n], {n, 0, 35}] (* Indranil Ghosh, Aug 09 2017 *)
-
Python
from sympy.core.cache import cacheit from sympy import binomial @cacheit def b(n, k, j): return 1 if j==n else sum([sum([binomial(i, m)*binomial(j - 1, i - 1 - m) for m in range(max(k, i - j), i)])*b(n - j, k, i) for i in range(1, n - j + 1)]) def a(n): return 1 if n==0 else sum([b(n, 3, j) for j in range(3, n + 1)]) print([a(n) for n in range(36)]) # Indranil Ghosh, Aug 09 2017