A288685 Number of Dyck paths of semilength n such that no positive level has fewer than nine peaks.
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 462, 7217, 57783, 289400, 1043781, 3042593, 7833174, 18821247, 43417043, 97550980, 215243289, 469069428, 1020806036, 2342090587, 6886047798, 32238887181, 199504672863, 1232775909721, 6881782444707
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..300
- Wikipedia, Counting lattice paths
Programs
-
Mathematica
b[n_, k_, j_]:=b[n, k, j]=If[j==n, 1, Sum[Sum[Binomial[i, m] Binomial[j - 1, i - 1 - m], {m, Max[k, i - j], i - 1}] b[n - j, k, i], {i, n - j}]]; a[n_]:=If[n==0, 1, Sum[b[n, 9, j], {j, 9, n}]]; Table[a[n], {n, 0, 40}] (* Indranil Ghosh, Aug 10 2017 *)
-
Python
from sympy.core.cache import cacheit from sympy import binomial @cacheit def b(n, k, j): return 1 if j==n else sum([sum([binomial(i, m)*binomial(j - 1, i - 1 - m) for m in range(max(k, i - j), i)])*b(n - j, k, i) for i in range(1, n - j + 1)]) def a(n): return 1 if n==0 else sum([b(n, 9, j) for j in range(9, n + 1)]) print([a(n) for n in range(41)]) # Indranil Ghosh, Aug 10 2017