A288728 Number of sum-free sets that can be created by adding n to all sum-free sets [1..n-1].
1, 1, 3, 3, 7, 8, 18, 19, 47, 43, 102, 116, 238, 240, 553, 554, 1185, 1259, 2578, 2607, 5873, 5526, 11834, 12601, 24692, 24390, 53735, 52534, 107445, 107330, 218727, 215607, 461367, 427778, 891039, 910294, 1804606, 1706828, 3695418, 3411513, 7136850, 6892950
Offset: 1
Keywords
Examples
1 can be added to {}; 2 can be added to {} but not {1}; 3 can be added to {},{1},{2}; 4 can be added to {},{1},{3} but not {2},{1,3},{2,3}. From _Gus Wiseman_, Aug 12 2023: (Start) The a(1) = 1 through a(7) = 18 sum-free sets with maximum n: {1} {2} {3} {4} {5} {6} {7} {1,3} {1,4} {1,5} {1,6} {1,7} {2,3} {3,4} {2,5} {2,6} {2,7} {3,5} {4,6} {3,7} {4,5} {5,6} {4,7} {1,3,5} {1,4,6} {5,7} {3,4,5} {2,5,6} {6,7} {4,5,6} {1,3,7} {1,4,7} {1,5,7} {2,3,7} {2,6,7} {3,5,7} {4,5,7} {4,6,7} {5,6,7} {1,3,5,7} {4,5,6,7} (End)
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 1..88
- Eric Weisstein's World of Mathematics, Sum-Free Set
Programs
-
Mathematica
Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Intersection[#,Total/@Tuples[#,2]]=={}&]],{n,10}] (* Gus Wiseman, Aug 12 2023 *)
Comments