cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288732 a(n) = a(n-1) + 2*a(n-4) - 2*a(n-5) for n >= 5, where a(0) = 2, a(1) = 4, a(2) = 6, a(3) = 8, a(4) = 10.

Original entry on oeis.org

2, 4, 6, 8, 10, 14, 18, 22, 26, 34, 42, 50, 58, 74, 90, 106, 122, 154, 186, 218, 250, 314, 378, 442, 506, 634, 762, 890, 1018, 1274, 1530, 1786, 2042, 2554, 3066, 3578, 4090, 5114, 6138, 7162, 8186, 10234, 12282, 14330, 16378, 20474, 24570, 28666, 32762
Offset: 0

Views

Author

Clark Kimberling, Jun 16 2017

Keywords

Comments

Conjecture: a(n) is the number of letters (0's and 1's) in the n-th iterate of the mapping 00->1000, 10->01, starting with 00; see A288729.
From Michel Dekking, Mar 25 2018: (Start)
Note that a(n) - a(n-1) = 2*[a(n-4) - a(n-5)] for n>4.
It follows that this sequence is a union of four simple sequences:
a(4k-4) = 4*2^k - 6 = A131130(k) for k = 1,2,3,...
a(4k-3) = 5*2^k - 6 = A020714(k) - 6 for k = 1,2,3...
a(4k-2) = 6*2^k - 6 = A007283(k+1) - 6 for k = 1,2,3, ...
a(4k-1) = 7*2^k - 6 = A048489(k) for k = 1,2,3...
(End)

Crossrefs

Cf. A288729.

Programs

  • GAP
    a:=[2,4,6,8,10];; for n in [6..45] do a[n]:=a[n-1]+2*a[n-4]-2*a[n-5]; od; a; # Muniru A Asiru, Mar 22 2018
    
  • Maple
    f:= gfun:-rectoproc({a(n) = a(n-1) + 2*a(n-4) - 2*a(n-5),
    a(0) = 2, a(1) = 4, a(2) = 6, a(3) = 8, a(4) = 10},a(n),remember):
    map(f, [$0..50]); # Robert Israel, Mar 25 2018
  • Mathematica
    LinearRecurrence[{1, 0, 0, 2, -2}, {2, 4, 8, 8, 10}, 40]
  • PARI
    x='x+O('x^99); Vec(2*(1+x+x^2+x^3-x^4)/(1-x-2*x^4+2*x^5)) \\ Altug Alkan, Mar 22 2018

Formula

a(n) = a(n-1) + 2*a(n-4) - 2*a(n-5) for n >= 5, where a(0) = 2, a(1) = 4, a(2) = 6, a(3) = 8, a(4) = 10.
G.f.: -((2*(-1 - x - x^2 - x^3 + x^4))/(1 - x - 2*x^4 + 2*x^5)).

Extensions

a(41)-a(49) from Muniru A Asiru, Mar 22 2018