A288732 a(n) = a(n-1) + 2*a(n-4) - 2*a(n-5) for n >= 5, where a(0) = 2, a(1) = 4, a(2) = 6, a(3) = 8, a(4) = 10.
2, 4, 6, 8, 10, 14, 18, 22, 26, 34, 42, 50, 58, 74, 90, 106, 122, 154, 186, 218, 250, 314, 378, 442, 506, 634, 762, 890, 1018, 1274, 1530, 1786, 2042, 2554, 3066, 3578, 4090, 5114, 6138, 7162, 8186, 10234, 12282, 14330, 16378, 20474, 24570, 28666, 32762
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 2, -2).
Crossrefs
Cf. A288729.
Programs
-
GAP
a:=[2,4,6,8,10];; for n in [6..45] do a[n]:=a[n-1]+2*a[n-4]-2*a[n-5]; od; a; # Muniru A Asiru, Mar 22 2018
-
Maple
f:= gfun:-rectoproc({a(n) = a(n-1) + 2*a(n-4) - 2*a(n-5), a(0) = 2, a(1) = 4, a(2) = 6, a(3) = 8, a(4) = 10},a(n),remember): map(f, [$0..50]); # Robert Israel, Mar 25 2018
-
Mathematica
LinearRecurrence[{1, 0, 0, 2, -2}, {2, 4, 8, 8, 10}, 40]
-
PARI
x='x+O('x^99); Vec(2*(1+x+x^2+x^3-x^4)/(1-x-2*x^4+2*x^5)) \\ Altug Alkan, Mar 22 2018
Formula
a(n) = a(n-1) + 2*a(n-4) - 2*a(n-5) for n >= 5, where a(0) = 2, a(1) = 4, a(2) = 6, a(3) = 8, a(4) = 10.
G.f.: -((2*(-1 - x - x^2 - x^3 + x^4))/(1 - x - 2*x^4 + 2*x^5)).
Extensions
a(41)-a(49) from Muniru A Asiru, Mar 22 2018
Comments