A288743 Number of Dyck paths of semilength n such that the maximal number of peaks per level equals two.
1, 1, 7, 18, 59, 193, 616, 1955, 6244, 19926, 63490, 202068, 642816, 2044571, 6502193, 20673020, 65714586, 208870774, 663868055, 2109997964, 6706282384, 21315049217, 67748772174, 215343287489, 684507346839, 2175916952697, 6917096914771, 21989855308501
Offset: 2
Keywords
Examples
. a(4) = 7: /\ /\ /\/\ /\ /\ /\ . /\/\/ \ /\/ \/\ /\/ \ / \/\/\ / \/ \ . . . /\/\ . /\/\ / \ . / \/\ / \ .
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..1000
- Wikipedia, Counting lattice paths
Programs
-
Maple
b:= proc(n, k, j) option remember; `if`(j=n, 1, add( b(n-j, k, i)*add(binomial(i, m)*binomial(j-1, i-1-m), m=max(0, i-j)..min(k, i-1)), i=1..min(j+k, n-j))) end: g:= proc(n, k) option remember; add(b(n, k, j), j=1..k) end: a:= n-> g(n, 2)-g(n, 1): seq(a(n), n=2..35);
-
Mathematica
b[n_, k_, j_]:=b[n, k, j]=If[j==n, 1, Sum[b[n - j, k, i] Sum[Binomial[i, m] Binomial[j - 1, i - 1 - m], {m, Max[0, i - j], Min[k, i - 1]}], {i, Min[j + k, n - j]}]]; g[n_, k_]:=Sum[b[n, k, j], {j, k}]; Table[g[n, 2] - g[n, 1], {n, 2, 35}] (* Indranil Ghosh, Aug 09 2017 *)
-
Python
from sympy.core.cache import cacheit from sympy import binomial @cacheit def b(n, k, j): return 1 if j==n else sum(b(n - j, k, i)*sum(binomial(i, m)*binomial(j - 1, i - 1 - m) for m in range(max(0, i - j), min(k, i - 1) + 1)) for i in range(1, min(j + k, n - j) + 1)) def g(n, k): return sum(b(n, k, j) for j in range(1, k + 1)) def a(n): return g(n, 2) - g(n, 1) print([a(n) for n in range(2, 36)]) # Indranil Ghosh, Aug 09 2017