A288748 Number of Dyck paths of semilength n such that the maximal number of peaks per level equals seven.
1, 1, 17, 71, 368, 1697, 7769, 34751, 153313, 668088, 2882104, 12329145, 52358300, 220901081, 926638057, 3867432363, 16068748557, 66495876593, 274178902925, 1126793986670, 4616878543095, 18864740697016, 76885237242318, 312611605360287, 1268261191750753
Offset: 7
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 7..1000
- Wikipedia, Counting lattice paths
Programs
-
Maple
b:= proc(n, k, j) option remember; `if`(j=n, 1, add( b(n-j, k, i)*add(binomial(i, m)*binomial(j-1, i-1-m), m=max(0, i-j)..min(k, i-1)), i=1..min(j+k, n-j))) end: g:= proc(n, k) option remember; add(b(n, k, j), j=1..k) end: a:= n-> g(n, 7)-g(n, 6): seq(a(n), n=7..35);
-
Mathematica
b[n_, k_, j_]:=b[n, k, j]=If[j==n, 1, Sum[b[n - j,k, i] Sum[Binomial[i, m] Binomial[j - 1, i - 1 - m], {m, Max[0, i - j], Min[k, i - 1]}], {i, Min[j + k, n - j]}]]; g[n_, k_]:=Sum[b[n, k, j], {j, k}]; Table[g[n, 7] - g[n, 6], {n, 7, 35}] (* Indranil Ghosh, Aug 08 2017 *)
-
Python
from sympy.core.cache import cacheit from sympy import binomial @cacheit def b(n, k, j): return 1 if j==n else sum([b(n - j, k, i)*sum([binomial(i, m)*binomial(j - 1, i - 1 - m) for m in range(max(0, i - j), min(k, i - 1) + 1)]) for i in range(1, min(j + k, n - j) + 1)]) def g(n, k): return sum([b(n, k, j) for j in range(1, k + 1)]) def a(n): return g(n, 7) - g(n, 6) print([a(n) for n in range(7, 36)]) # Indranil Ghosh, Aug 08 2017