A288780
Zero together with the row sums of A288778.
Original entry on oeis.org
0, 0, 2, 9, 36, 165, 918, 6111, 47304, 416097, 4091130, 44417043, 527456556, 6798432069, 94499679582, 1408924024695, 22425642181008, 379514672913321, 6804212771165634, 128827325000617947, 2568509718703606260, 53787877376348226573, 1180349932648067726886
Offset: 0
-
a:= proc(n) option remember; `if`(n<3, n*(n-1),
n*(a(n-1)*n/(n-1)-a(n-2)*(n-1)/(n-2)))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Jun 16 2017
-
{0}~Join~Map[Total, Table[(n - k + 1) k! - (k - 1)!, {n, 22}, {k, n}]] (* Michael De Vlieger, Jun 21 2017 *)
A288777
Triangle read by rows in which column k lists the positive multiples of the factorial of k, with 1 <= k <= n.
Original entry on oeis.org
1, 2, 2, 3, 4, 6, 4, 6, 12, 24, 5, 8, 18, 48, 120, 6, 10, 24, 72, 240, 720, 7, 12, 30, 96, 360, 1440, 5040, 8, 14, 36, 120, 480, 2160, 10080, 40320, 9, 16, 42, 144, 600, 2880, 15120, 80640, 362880, 10, 18, 48, 168, 720, 3600, 20160, 120960, 725760, 3628800, 11, 20, 54, 192, 840, 4320, 25200, 161280, 1088640
Offset: 1
Triangle begins:
1;
2, 2;
3, 4, 6;
4, 6, 12, 24;
5, 8, 18, 48, 120;
6, 10, 24, 72, 240, 720;
7, 12, 30, 96, 360, 1440, 5040;
8, 14, 36, 120, 480, 2160, 10080, 40320;
9, 16, 42, 144, 600, 2880, 15120, 80640, 362880;
10, 18, 48, 168, 720, 3600, 20160, 120960, 725760, 3628800;
11, 20, 54, 192, 840, 4320, 25200, 161280, 1088640, 7257600, 39916800;
...
For n = 9 and k = 2: T(9,2) is the number of numbers with two digits in A288528.
For n = 9 the row sum is 9 + 16 + 42 + 144 + 600 + 2880 + 15120 + 80640 + 362880 = 462331, the same as A014145(9) and also the same as the number of terms in A288528.
Middle diagonal gives
A001563, n>=1.
Showing 1-2 of 2 results.
Comments