A288813 Irregular triangle read by rows: T(m, k) is the list of squarefree numbers A002110(m) < t < 2*A002110(m) such that A001221(t) = m.
3, 10, 42, 330, 390, 2730, 3570, 3990, 4290, 39270, 43890, 46410, 51870, 53130, 570570, 690690, 746130, 870870, 881790, 903210, 930930, 1009470, 11741730, 13123110, 14804790, 15825810, 16546530, 17160990, 17687670, 18888870, 281291010, 300690390, 340510170
Offset: 1
Examples
Triangle begins: n a(n) 1: 3 2: 10 3: 42 4: 330 390 5: 2730 3570 3990 4290 6: 39270 43890 46410 51870 53130 7: 570570 690690 746130 870870 881790 903210 930930 1009470 ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..14936 (Rows 1 <= m <= 36)
- Eric Weisstein's World of Mathematics, Primorial
- Eric Weisstein's World of Mathematics, Squarefree
- Michael De Vlieger, Relations between A288813, A288784, A002110, and A244052, including prime decompositions of terms of a(n) and all code used to generate the tables.
Programs
-
Mathematica
Table[Function[P, Select[Range[P + 1, 2 P - 1], And[SquareFreeQ@ #, PrimeOmega@ # == n] &]]@ Product[Prime@ i, {i, n}], {n, 7}] // Flatten (* Michael De Vlieger, Jun 24 2017 *) f[n_] := Block[{P = Product[Prime@ i, {i, n}], lim, k = 1, c, w = ConstantArray[1, n]}, lim = 2 P; Sort@ Reap[Do[w = If[k == 1, MapAt[# + 1 &, w, -k], Join[Drop[MapAt[# + 1 &, w, -k], -k + 1], ConstantArray[1, k - 1]]]; c = Times @@ Map[If[# == 0, 1, Prime@ #] &, Accumulate@ w]; If[c < lim, Sow[c]; k = 1, If[k == n, Break[], k++]], {i, Infinity}] ][[-1, 1]] ]; Array[f, 9] // Flatten (* Michael De Vlieger, Jun 28 2017, faster *)
-
PARI
primo(n) = prod(i=1, n, prime(i)); row(n) = my(vrow = []); for (j=primo(n)+1, 2*primo(n)-1, if (issquarefree(j) && (omega(j)==n), vrow = concat(vrow, j))); vrow; tabf(nn) = for (n=1, nn, print(row(n))); \\ Michel Marcus, Jun 29 2017
Comments